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Abstract

We present a hardware solution that optimally imple-
ments several configurations of Neural Networks and has
the possibility of on-chip learning. This architecture pro-
vides not only the efficiency of the hardware realizations
but also the adaptability and flexibility of the software
implementations. This solution uses an efficient pipeline
in order to improve the throughput of the system in real
time applications. Thanks to a novel implementation of
the sigmoid activation function (through the modification
of the A-Law, based on a completely combinational mod-
ule), the system devised has neither the area restrictions
of traditional solutions using internal LUTs nor the time
delays involved in external memories access.

1 Introduction

Although modern computers are very competent
doing repetitive and numerically intensive tasks, they
are not so efficient solving other tasks which appear
simple for humans. In that sense, humans are able
to learn and remember new concepts, techniques and
methods with the only help of examples and a lit-
tle feedback of an instructor. Humans have also the
ability to extract complex rules from their decisions
and reasonings [4].

Artificial Neural Networks are inspired in biologi-
cal nervous systems; they try to emulate the function-
ality and architecture of the processing units (neu-
rons) and the topology of these systems (synapses
and layers) looking for the main functions of the
reasoning, the remembering and the generalization.
However, these mathematical models must perform
a great number of parallel computations, all of them
expensive in terms of CPU cycles. We can conclude
that even though software simulation is the most im-
mediate and easy solution, it is not the best choice
for high rate applications.

Neural Networks begin to be used in a large range
of commercial applications, all of them with a set
of well defined necessities: they need a real time
response from the net (especially during the recall
phase), they have to develop a great number of oper-
ations, once the topology of the net is defined for the
application itself, it is not usually changed; and, fi-
nally, they will be necessary in new portable devices.
All these requirements force us to use a hardware so-
lution instead of the traditional software platforms.
However, traditional analog electronics is not able to
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bring a solution with enough precision and reconfig-
urability; and digital programmable devices such as
FPGAs and DSPs have not enough integrated logic
capacity, thus forcing us to use several of these com-
ponents.

The architecture we are introducing is an ASIC ca-
pable of on-chip learning providing fast response with
high reconfigurability. However, one of our most im-
portant contributions is the employment of a modi-
fied A-Law [12] to implement the activation function.
This technique reduces the chip size with respect to
traditional LUT based implementations. Besides, the
design of the chip, presenting processing units with
internal and independent memories, takes into ac-
count the possibility of a future interface which could
transfer the weights from a PC to the net (allowing
the possibility of using different learning algorithms).

The paper is organized as follows: section 2 re-
views the state-of-the-art in hardware Neural Net-
works technology. Section 3 shows the fundamentals
of Neural Networks theory. In section 4 both the
global architecture of the circuit and its main mod-
ules are described. Section 5 explains the details con-
cerning the pipeline which has been designed for the
system, while section 6 deals with aspects related to
the synthesis of the circuit. Finally, section 7 shows
the conclusions and future work.

2 Related work

Various hardware implementations of neural net-
works can be found in the literature. Both analog and
digital solutions have been proposed. In most cases,
however, these designs reach optimal speed and area
results only when they are well suited to an specific
topology of the net.

For example, in [10] and [11] an analog VLSI ar-
chitecture is developed. This solution contains 1024
neurosynapses in an active area of 6.1 mm x 3.6 mm
(with 27000 transistors and 1024 MOS capacitors);
however, it is very limited by the number of neurons
(between 10 and 16). Besides, the reconfigurability
of the analog solutions is somewhat poor; if the chip
is composed of a certain number of neurons, it will
not easily be able to work with nets with a different
number of units.

Solutions regarding the implementation of Neu-
ral Networks on FPGAs are also abundant, like the
one proposed in [3], where it is necessary to intro-
duce many devices (22 FPGAs for a 5:4:2 net) due
to the reduced logic integration of the FPGAs used
(XC3090). It could be thought that newer models of



these devices, with higher logic integration, could im-
prove these solutions, but it would still remain a slow
performance due to FPGA restrictions. However, im-
portant advances have been done on this matter as
the research of [5].

References can also be found about implementa-
tions on DSPs. Usually, Neural Nets have to be
implemented with several DSPs ([8] employs 15 de-
vices), because logic integration restrictions of DSPs
are similar to FPGA restrictions; nevertheless they
can achieve a faster response.

8 Fundamentals of Neural Networks
3.1 Functioning of Neural Nets

An artificial Neural Network is a processing algo-
rithm which shares certain analogies with biological
neural nets. Artificial Neural Networks have been
developed with the following assumptions:

e Information processing takes place at processing
units called neurons.

e Signals between neurons are transmitted
through connections called synapses.

e Each connection has an associated weight, which
multiplies the transmitted signal value.

e Fach neuron has an associated activation func-
tion which takes as input the weighted sum of
signals to the input of the neuron, and gives the
output of the processing unit.

A typical Neural Network is characterized by (1)
the distribution of synapses and neurons (topology),
(2) the algorithm used for finding the weights of the
connections (learning algorithm), and (3) the activa-
tion function of the processing units.

Neural Networks are disposed in layers. Neurons
belonging to the same layer work in a similar way; so,
they usually develop the same activation function and
are connected to the same neurons of the following
and previous layer. Figure 1 presents a net with two
layers' and the notation followed to the end of the
article (z; is the input signal to the net, yy is the
output signal and #j, is the target value).
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Figure 1: Generalized Network

The functioning of the artificial neuron tries to im-
itate the behavior of the biological neuron; therefore,
if we consider a processing unit like the one presented
in figure 2, the output of the unit is:

1 A two layer topology can solve almost all of the interesting
problems [14]

Yin = sz " W; (1)
i=1
y = f(Yin) (2)

where f is the activation function of the neuron,

typically the sigmoid function f(z) = #
Ni
input
Xi y_in f() y
w3

Figure 2: Artificial neuron

The learning algorithm is an iterative method used
to assign correct values to the weights of the net in
order to solve the problem for which the network has
been designed. Two types of learning algorithms can
be distinguished: supervised and unsupervised. The
main difference between them is that in supervised
learning the training vectors are presented with their
associated targets, but in unsupervised learning the
associated outputs for the training vectors are un-
known. Supervised learning algorithms can be used
in most minimization, classification and clustering
problems; the backpropagation method, a supervised
learning algorithm, is one of the most powerful and
flexible techniques for training the net [4]; therefore,
it has been chosen for our hardware implementation.
Next section describes its fundamentals.

3.2 Backpropagation algorithm

Learning algorithm:
1. Initialization of weights with values near to zero

2. While stopping condition is false,
For each pair of training vectors,
Forwardpropagation of inputs
(a) Each input neuron (X;,i = 1...n) gets its
input signal z; and broadcasts it to all neu-
rons on the hidden layer.

(b) Each hidden neuron (Z;,j = 1...p) adds its
weighted input signals,

Z; = Z.Z'z"l}jz' (3)
i=1

applies its activation function (which gener-
ates a useful nonlinear partition of the sam-
ple space) to compute its output signal,

zj = f(z}) (4)
and broadcasts this one to all output neu-
rons.

(¢) Each output neuron (Y, k = 1...m) adds its
weighted input signals,

P
i =D 2wk (5)
i=1



and applies its activation function to com-
pute its output signal,

ye = f(yr) (6)
Backpropagation of the error

(d) Each output neuron (Y, k = 1...m) receives
a target (¢) associated with the training
vector, and calculates its information error
term,

O = (tx —yn) f' (yg) (7)

(where f’ is the derivative form of f, calcu-
lated as f(y;)-(1— f(yy)); it then computes
its weight correction term

Awkj = Ol(sij (8)

(where a, known as learning factor, controls
the learning speed) and sends dj, to the hid-
den neurons.

(e) Each hidden neuron (Z;,j = 1...p) adds its
weighted input deltas,

(5; = Z 6kwkj (9)
k=1

multiplies it by the derivative of the activa-
tion function in order to calculate its infor-
mation error term,

d; = 05 f'(25) (10)

and computes the weight correction term

A'Uj,' = Ot(Sj.’L'z' (11)
Weight updating:

(f) Each output neuron (Y%, k = 1...m) updates
its weights (j = 0...p):

wij (new) = wyj(old) + Awg; (12)

Each hidden neuron (Z;,j = 1...p) updates
its weights (i = 0...n):

vji(new) = vj;(old) + Avj; (13)

(g) Test stopping condition (such as itera-
tion number, error decrease, error stabiliza-
tion...).

4 Architecture of the circuit

4.1 General architecture

The processing units of the chip are disposed in a
ring architecture, having their own internal memo-
ries (data and weights) and sharing a set of RAMs
(auxiliary memories). This configuration is derived
from the classical 1D vector - matrix multiplier, pro-
viding an optimal area-speed trade-off, and high re-
configurability. Hence, the system can execute differ-
ent network configurations. Also, it can achieve high
learning and recall speeds and the active area of the
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Figure 3: System architecture scheme

chip fits the ASIC standards [6]. Figure 3 shows this
general scheme.

During the forwardpropagation phase, the ring car-
ries the partial operations (weighted sums, equations
3-6) from one processing unit to the following. Dur-
ing the backpropagation phase, each processing unit
is accessed individually by the control unit, perform-
ing the weight updating (equations 12-13).

The architecture we are introducing, and for which
we will give the implementation details and results,
has eight processing units and, due to area restric-
tions, it is able to implement nets with up to 200
neurons per layer. With this configuration and re-
striction, the internal RAMs of the processing units
must store up to % values, giving a reasonable to-
tal memory area. These architectural characteristics
could be easily changed through the use of implemen-
tation parameters.

The weights of a Neural Network can experiment a
great variability. There is no algorithm that can pre-
dict this weight oscillation, and it depends on the net-
work topology and input data. However, when data
are normalized, the synaptic weights exhibit a statis-
tic distribution with high probability around zero and
very low probability above 10. This behavior can be
corroborated by experiments with a software simu-
lator like SNNS [9]. On the other hand, in order to
achieve the highest learning speed, data have to be
represented with high accuracy (software simulators
usually employ 5 or 6 decimal digits). Due to these
restrictions and characteristics, the system has been
designed for working with floating point operands,
and all the arithmetic subsystems have been devised
for achieving such functionality.

An 18 bits mantissa and 6 bits exponent configura-
tion has been chosen, obtaining sufficient resolution
and flexibility in the weight oscillation for our pur-
poses. Hence, data near zero can be operated with up
to 5 decimal digits. Besides, the range representation
of data can be extremely extended but the precision
achieved is then reduced.

4.2 Processing units

Each processing unit is composed of a floating
point multiplier, a floating point adder, a register,
two 32 word RAMs and a set of multiplexers which
allow the modification of the connections in order
to get the reconfiguration of the units. These can
operate as independent neurons, but this is an un-
efficient manner because the net topology would be
limited by the number of hardware neurons and these
could never operate as different neurons of the same



layer. Figures 4, 5 and 6 show the reconfiguration of
the processing units during the forwardpropagation
(equations 1 and 2), the delta computation (equa-
tion 9) and the weight updating (equations 12 and
13) phases.

data

following
unit

data

weights RAM

Figure 6: Processing unit during weight updating

The internal memories of each processing unit store
the synaptic weights and input data. The data oper-
ated by the adder and the multiplier depends on the
working phase, and these can be provided from the
previous processing unit in the ring, from an external
memory or from the processing unit itself.

4.3 Activation function

As it was shown in section 3.2, the activation func-
tion is the nonlinear application the neuron uses to
generate a useful partition of the sample space. Many
functions can be used (linear, gaussian, sinusoidal...),
but the most common choice is the sigmoid function
y = ye== because of its excellent characteristics of
convergence speed and easy derivability. Traditional
hardware implementations of Neural Networks usu-
ally employ look-up tables in order to generate the
correct values of the function. However, the precision
required in the sampling of the function forces to use
external memories due to the size of these devices (for
example, if 24 bits are used in data codification, a 16
MB LUT would be needed for the sigmoid function
tabulation). However, the option of external memo-
ries, should be avoided because of the delays intro-
duced in the communication interface. The size of
the memories could be reduced employing zero-order
and first-order approximations of the sigmoid func-

tion, but a huge area in memory devices would be
required.

We have developed a combinational approximation
to the sigmoid function through the modification of
the European compression standard (A-Law) due to
the previous considerations. The A-Law of compres-
sion is the European standard (CCITT) for approxi-
mating the logarithmic compression of voice samples
coded with 16 bits [12]. This compressor can be ex-
pressed as:

Tmaz
n[A(z|/Tmae)] 1 _ _|2]
maz * 1+1n(A) A < Tmaz <1

y=C(z) =

A(|z]/Tman T
{ymaz . (ll-l—‘l/n(A_) ) 0< —l ‘ < %

The A-Law compression scheme approximates that
output characteristic with linear segments. There-
fore, an output characteristic very similar to the first-
order approximation of the sigmoid function is ob-
tained. The main advantage of this approximation
is its easiness of implementation with combinational
logic, which avoids the large area requirements of
other solutions.

The activation function approximation module
works with the mantissa of the input data. It gener-
ates the output by assigning a segment label to the
most representative bits of the operand as it is shown
in figure 7. The classification of the operand in the
segment it belongs to, takes place with a set of com-
binational operations; the rest of operations can also
be done with combinational logic. Finally, a constant
value for the exponent is assigned in order to normal-
ize the output from -0.5 to 0.5. Figure 8 summarizes
the fields involved in output data codification.

MANTISSA  EXPONENT

00..00 110001111011

111

101

o011

001

Figure 7: Linear approximation of the sigmoid function

CONSTANT EXPONENT
ZEROES SEGMENTLABEL | M. SIGNIFICANT BITS | (in two's complement)

0000....000 110 01 111011

Figure 8: Data output fields

4.4 Pseudo-random generator

It has been demonstrated [14] that the only re-
quirement for the first initialization of the weights is
to choose random values near zero. The chip has been
equipped with a simple sequential module capable of
generating pseudo-random values near the origin. It
is based on a shift register and a logic XOR function
of its contents. The mantissa of the output result is
formed with the value contained in the shift register
while the exponent is adjusted to obtain near zero
result data.



Table 1: Throughput

Phase Clock cycles
Recall [m+7(m)-8-Z4+7(m)-Z+n+7(n)-8-E+n(n)-E
. m+n(m)-8-Z+a(m)-Z+n+7(n)-8-L+4+
Learning +n+717'nn)-%+n1n+2-7r(n)-£n
4.5 Arithmetic and control unit 0
The central processing unit of the chip is com- S 03 24
posed of an arithmetic unit and a control unit. The e Z 0
arithmetic unit develops the operations involved in o lo o
the weight correction (equations 3-8, 10 and 11) and _ alelo o
memories updating (output data from previous layer fme oo o
and weight updating). As has been said in previous 2l 2lo o
sections, all the calculations needed are computed us- < | <= ol s
ing floating point arithmetic. x1 |0 |o |o

On the other hand, the control unit sequenciates
the operations of data propagation and orders recon-
figuration of the processing units (see section 4.2) by
means of several independent finite state machines
which operate in a concurrent manner.

5 Pipeline

The system architecture that has been presented
in the previous paragraphs performs the parallel pro-
cessing of the data. However, this functionality would
not be possible without a careful disposition of values
(weights and inputs/outputs) in the internal memo-
ries of the processing units. It is also necessary a
mechanism for writing and reading these values [13].
The data transmission from one processing unit to
the following in the ring is controlled by an efficient
pipeline which operates during the recall and learning
phases.

Figures 9 and 10 show the correct disposition of
weights and input data for a 2:5:1 net with 4 pro-
cessing units?, where each column of the table cor-
responds to the internal RAM of a processing unit.
Reading of values begins from the bottom of the ta-
ble, one line at each clock cycle, and goes up. Initial
values (shaded in the figure) are used for pipeline
filling. Once these previous data have been oper-
ated (pipeline filled), the system provides one result
per clock cycle if the number of neurons per layer is
less than or equal to the number of processing units.
Otherwise, each result will be obtained in an integer
multiple of the clock cycle (equal to the max number
of neurons per layer / number of processing units).
Also, non-operation cycles will have to be inserted.

Referring to figures 9 and 10, the outputs of the
processing units are:

first clock cycle: z; -v11,0,0,0

second clock cycle: zy - vs1,21 - V11 + T2 - V12, 0,
0

third clock cycle: 7 - v31, 1 - V21 + T2 - Va2,
1 V11 + 22012, 0

fourth clock cycle: =z - vy1, 1 - v31 + X2 - v32,
T1 V21 + X2 * V22, X1 - V11 + T2t V12 = Y1

2The net dimensions have been chosen in order to clarify
the figures

PU1 PU2 PU3 PU4

Figure 9: Data
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Figure 10: Weights

and, from now on, the pipeline would generate one
output per clock cycle.

6 Implementation details

The system has been synthesized using a 0.35 um
technology library of standard cells provided by Mi-
etec [1]. An active area of approximately 11.1 mm?
without including any connection has been obtained.
Due to the combinational delays, the maximum op-
erating frequency is 111 MHz (limited by the com-
binational delay of the activation function genera-
tion module). For a (m:n:p) topology configuration,
where m, n and p are multiples of the number of
processing units®, the average clock cycle count val-
ues per data have been measured and appear in table
1 (where m(z) = ceil (%5* + 1) and ceil(z) is a func-
tion rounding the value of z towards infinity).

Figures 11 and 12 depict the obtained results about
learning speed (GCUPS* units) and recall speed
(GCPS® units). In these figures it is shown a com-
parative with other digital, analog and mixed (PC-
accelerators) solutions [7]. It can be seen that our
system improves the speed performance of most other
solutions. Only the ASICs Neuroclassifier (which

3This is the optimal case, for which a simple expression can
be obtained

4Giga-Connections Updated Per Second (learning phase)

5Giga-Connections Per Second (recall phase)



lacks on-chip learning) and the RN-200 (with only
40 MCUPS) offer better response during the recall
phase [7]. For these chips, however, there was no
available data about their area dimensions and the
type of arithmetic (fixed or floating point) employed.

NETWORK SPEED (LEARNING PHASE)

i
/
{
{
i
{
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Figure 11: Chip speed during learning phase
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Figure 12: Chip speed during recall phase

7 Conclusions and future work

The design of a new hardware architecture that
satisfies the Neural Network functionality with real
time restrictions has been shown. This solution ex-
hibits a high configurability and uses an efficient
pipeline in order to improve the throughput of the
system. However, the proposed architecture does not
relinquish to the precision and flexibility of other so-
lutions thanks to the use of floating point arithmetic.
By using 24 bits of precision in coding data, a suffi-
cient accuracy on the learning phase is achieved and
this stage can be implemented on chip.

Besides, the internal memories could be written
from the output of the chip. So that, a great flexi-
bility on changing the initial weights and doing the
learning off-chip could be obtained.

Additionally, thanks to a novel implementation of
the sigmoid activation function (through the modifi-
cation of the A-Law, based on a completely combina-
tional module), the system does not present neither
the area constraints of traditional solutions using in-
ternal LUTs nor the time delays involved in external
memory accesses.

Finally, the chip features are suitable for hard con-
strained real-time applications like artificial vision,

speech recognition and control, allowing a fast re-
sponse in the learning and recall phase.

As future work, reduction of memory and bit re-
quirements by means of novel learning algorithms like
Reactive Tabu Search [2] (which seems to be able of
working with only 2 or 3 bits coded data) should
be explored. Also, the hardware could be improved
by implementing several learning algorithms and ac-
tivation functions that could be chosen in order to
experiment with different features of Neural Nets.
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