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Abstract— Packet switched networks such as the Internet
require efficient IP routing in order to manage the traffic flows.
In these environments CAM memories play a key role because
they provide the address resolution time. This paper presents
a practical implementation of a low-power CAM oriented to
high-performance IP routing. The architecture devised shows
optimal results in terms of area, speed and power consumption
for these search-based applications by proposing a pipelined
implementation split into banks with a reduction of the parameter
word. Experimental results show how the proposed architecture
provides significant improvements in terms of power and speed.

I. INTRODUCTION

Content-Addressable Memories (CAM), especially fully
parallel CAM, provide an exclusive fast data-search function
by accessing data by its content rather than its memory
location. Nowadays, it can be found a wide range of ap-
plications taking advantage of the CAM function: lookup
tables, databases, associative computing, data compression,
etc. Recently in the network computing era, fast lookup tables
are required for address resolution in network switches and
routers such as LAN bridges/switches, ATM switches, and
layer-3 switches. Moreover, CAM’s fast search functions are
especially useful in supporting the quality of service (QoS)
required for real-time applications like multimedia data trans-
mission. Even faster search operations are desired for higher
speed communications networks like OC-192 and OC-768
where address resolution within less than 10 ns is required.

CAMs are fully associative storage devices that store fixed-
length binary words in any location. The memory can be
queried to determine if a particular word, or key, is stored, and
if so, the address at which it is stored. This search operation
is performed in a single clock cycle by a parallel bitwise
comparison of the key against all stored words. Since it is
possible for multiple CAM entries to match the same query,
CAMs often include priority resolution logic to return a single
match. This is often a simple mechanism that returns the first
match in the device, requiring the set of stored words to be
sorted according to priority.

Obviously, the quick search access of the CAMs has a
clear disadvantage, their low memory density, mainly due
to their area-consuming memory cells and the difficulty of
implementing the column address. Another limiting factor to
be considered is that power consumption in CAM is still high
in comparison with RAM of similar capacity. The main reason

for this is the large current and large power consumption in
the search operation due to the inherent nature of CAM’s
parallel search. In this operation, the input data which has
been searched for is sent to all memory locations, activating all
their array cells for simultaneous data comparison. Therefore,
current flows in major data system circuits including long
heavy data lines and bitlines for all cell arrays. Another
main power consumers during the search operation are the
match detection circuits (one for each data word) that include
heavy word match lines, and other search-related circuits
such as encoders needed for the selection of only one valid
match. From this combination of the parallel search power
consuming factor with the extra hardware cost needed for its
implementation comes the difficulty to achieve high density
integration in CAM memories.

Packet switched networks such as the Internet require ef-
ficient IP routing in order to manage the traffic flows. The
relentless increase in link speeds and traffic volume imposes
astringent constraints on IP routing solutions. This paper
presents a practical implementation of a low-power CAM
oriented to high-performance IP routing. The architecture
devised shows optimal results in terms of area, speed and
power consumption for these search-based applications by
proposing a pipelined implementation of a precomputation-
based CAM (in the following PB-CAM) split into banks with a
reduced parameter word. On the one hand, the use of a pipeline
structure significantly improves the access time. On the other
hand, the banked implementation and the modifications of
the parameter extraction circuits provide a very low power
operation in the CAM.

The paper structure is as follows. Next, an overview of the
CAM architecture and operation is summarized in section II.
The previous works on this area are reported in section III, and
the proposed architecture is deeply described in sections IV
and V. Finally, some conclusions are drawn.

II. CAM OVERVIEW

Figure 1 shows a block diagram of a simplified conventional
(non-pipelined non-hierarchical) CAM architecture. The CAM
has four horizontal words (CAM entries) and four bits per
entry. The CAM compares the searched data (i.e., 1001 in the
figure) to all the entries in the CAM, and identifies the words
that match. Whenever a search operation happens, the vertical
search-lines (SLs) are reset to ground and the horizontal



Fig. 1. Simplified CAM architecture [1]

match-lines (MLs) to VDD. The precharge of the MLs to VDD

puts them all temporarily in the match state while the discharge
of the SLs prevents wasting of direct-path current during the
subsequent precharge of the MLs. When the search operation
is complete, the match-lines that remain in the match state will
identify the words that match the search data.

After the ML precharge, the search-line registers drive the
search data onto the differential search-lines (S̄L). Then each
CAM cell compares its stored bit against the corresponding
search bit on the SLs. The inset of Figure 1 illustrates the
schematic of a NOR-based CAM cell. This cell consists of
a memory cell, M, which is an SRAM cell in this work [1],
and four compare transistors arranged in two pulldown paths
between ML and ground. In the cell, a mismatch (or miss
for short) between SL and D results in a series path from
the ML to ground. On the other hand, a match between SL
and D results in no path from ML to ground. The pulldown
paths of the individual CAM cells combine on the ML like a
dynamic NOR to form either a path to ground (in the case of
any miss in the word) or no path to ground (in the case of
a full match). In other words, any single miss in any of the
cells of a word creates a path to ground that discharges the ML
(indicating a miss). Conversely, if all bits of a word match,
then the ML remains precharged high (indicating a match).
In the example of Figure 1, the search data, 1001, matches
the uppermost word in the array. Hence, its associated ML
(ML0) remains high indicating a match, while all the other
match-lines discharge to ground, indicating misses. The match-
line sense amplifiers (MLSAs) are used to distinguish a match
from a miss, often using a threshold voltage as the reference.

As mentioned earlier, the two main sources of power
consumption are the highly capacitive MLs and SLs.

III. RELATED WORK

Content addressable memory (CAM) is widely considered
as the most efficient architecture for pattern matching required
by the LZ77 compression process. In [2], a low-power CAM-
based LZ77 data compressor is proposed. By shutting down
the power for unnecessary comparisons between the CAM
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Fig. 2. General scheme for the the CAM architecture.

words and the input symbol, the proposed CAM architecture
consumes less power than the conventional implementation
without noticeable performance penalty.

Based on memory traces, which usually cause tag mismatch
within the lower four bits, in [3] a new serial CAM orga-
nization is proposed which consumes just 45% more than
a single tag RAM read and is only 25% slower than the
conventional, parallel CAM. In [4] this work is extended to
exploit the address patterns commonly found in application
programs, where testing the four least significant bits of the
tag is sufficient to determine over 90% of the tag mismatches.

In [6], the proposed CAM word structure adopts a static
pseudo nMOS circuit that not only improves system reliability,
but also prevents using clock signal to drive the overall system.
In order to reduce static power occurred in the proposed CAM
word structure, a precomputation approach is used to turn off
most pseudo nMOS circuits. This approach is extended in [5]
with a design based on a precomputation skill that saves not
only power consumption of the PB-CAM (Precomputation-
Based CAM) system, but also reduces transistor count and
operating voltage of the PB-CAM cell.

The work described in [7] derives power models for four
low-power CAMs from the fCV 2 base model. Attending
to this work, CAM has three major power-sinking sources:
evaluation power, input transition power and clocking power.

Also, [8] presents a new CAM cell with a pMOS match-line
driver which reduces search rush current and power consump-
tion, allowing a NOR-type match-line structure suitable for
high-speed search operations.

Despite the previous approaches to describe a low-power
implementation of a CAM, these works have not considered
the system operation of CAMs, with their hard constraints
in terms of access time an power. The work proposed here
introduces a pipelined implementation of CAM memories
targeting both low power and high performance. Next sections
will describe the main improvements proposed in this paper
with respect to the traditional and PB-CAM implementation
of the CAM.
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Fig. 3. General scheme for the the PB-CAM architecture.

IV. PROPOSED ARCHITECTURE

A. General Organization

A general CAM architecture usually consists of the memory
array with a valid bit field, the address decoder, the bitline
precharger, the word match circuit, and the address priority
encoder (see Figure 2). The valid bit field indicates the avail-
ability of stored data. During the data search operation, the
input data is sent into the CAM to be compared simultaneously
with all those valid data stored in the CAM. If the data is
found, an address from among those matches of comparison
is sent to the output.

To minimize the power consumed during the comparison,
one of the best approaches is to reduce the comparison
operations to a minimum. This can be carried out by a scheme
based on the precomputation of a simple parameter which,
preferably in a unique way, characterizes every data word [6].
An example of this kind of parameters may be the number of
ones in the word. In our work the CAM architecture adopts
the ones count function to perform the parameter extraction,
because the ones count function filters a large amount of
unmatched data with a small bit length.

The memory organization (depicted in Figure 3) of the
proposed PB-CAM architecture is composed of the memory
cell array, the parameter memory, and the parameter extractor.
This parameter extractor has been implemented with a chain
of full-adders to perform the ones-count function.

During the data writing operation, the parameter extractor
calculates the parameter of the input data, and then stores the
input data and its parameter into the data cell array and the
parameter cell array, respectively.

In the data searching operation, in order to reduce the large
amount of comparison operations, the operation is separated
into two comparison processes. During the first stage, the
parameter extractor calculates the parameter of the input data
and performs a preliminary comparison (the parameter com-
parison circuits compare in parallel this parameter of the input
data with all the parameters stored in the parameter memory).
Based on the two comparison processes, since there are a
majority of mismatches between the stored parameters and
those belonging to the input data, the number of comparisons
in the second comparison process is largely reduced. Figure 4

Fig. 4. Functional simulation of the comparison processes (match).

shows the functional simulation results for a match in the two
comparison processes. The parameter comparison process is
also known as the precomputation process.

To complete this CAM-search engine for an IP routing ap-
plication an associated RAM is needed. In the CAM memory,
the tags searched will be stored (the input addresses). In the
RAM memory, the output addresses associated to each tag
will be found. Therefore, the result of a search operation in
the CAM memory is directly mapped into the RAM memory.
In this way, the address encoders of Figures 2 and 3 can
be removed, using the Priority Encoder result as the RAM
controls. This implementation can be clearly seen in figure 8.

B. Pipelined Architecture

A clear way to improve the access time of a CAM is
the use of a pipeline structure, which additionally promises
greater scalability in the performance and density of IP routing
processors. In our approach the devised pipeline configuration
includes the following operations:

• READ operation: EXT - SEARCH - READ R
• OVERWRITE operation: EXT - SEARCH - WRITE R
• WRITE operation: EXT - DEC - WRITE CR

where READ is the read operation in the RAM memory after
the tag is found in the CAM, OVERWRITE is the search
and write operation on the RAM memory, and WRITE is the
operation to write a tag and its data in both CAM and RAM
memories. The pipeline stages defined within those operations
are EXT (parameter extraction), SEARCH (data comparison in
the CAM), DEC (decodification of internal address, common
for both RAM and CAM), READ and WRITE.

However, this three stages pipeline shows a structural and
data hazard, as depicted in figure 5.a 1 . This hazard is
produced in the CAM structure between the READ (or OVER-
WRITE) operation and the WRITE operation because the
CAM area is simultaneously accessed by the second and third
stages, respectively. This problem can be solved by including
a fourth pipeline stage splitting the WRITE operation into
WRITE C and WRITE R (see figure 5.b). All the CAM

1Resources (parameter extractor, address decoder, CAM and RAM memo-
ries) and data are shown in the plot.



Fig. 5. Structure of the proposed pipeline.
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Fig. 6. Parameter extractor (traditional implementation).

accesses are in the third stage and the RAM accesses in the
fourth.

• READ: EXT - NOP - SEARCH - READ R
• OVERWRITE: EXT - NOP - SEARCH - WRITE R
• WRITE: EXT - DEC - WRITE C- WRITE R
The second stage now means a stall in the Read and

Overwrite operations but can also be used for further low-
power capabilities, as they are the use of voltage scaling
techniques (see [9]).

C. Parameter Extractor

The parameter extractor implements a one’s count function
in order to perform the tag comparison. The implementation
of this module uses several area and power-demanding full-
adder circuits. In Figure 6 these full-adders are represented
with circles (including the number of FA units inside), while
the arcs show the number of lines that are propagated to the
full-adders in the same level (carry) or following level in the
matrix of circuits.

This implementation has been improved as Figure 7 shows.
The inclusion of controlled delays in the system allows us
to remove several full-adders and exchange others with half-
adders (those with two single lines as inputs) which show
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Fig. 7. Parameter extractor (improved implementation).

better behavior in terms of area, power consumption and speed.
As can be observed a simplified implementation of the

parameter extractor has been obtained, with very reduced
number of transistors and the corresponding optimization on
power dissipation and delay.

V. BANKED IMPLEMENTATION

The CAM architecture presented in previous sections re-
duces the power consumption of the original CAM imple-
mentation while still meeting the performance constrains.
However, the total power consumption of the logic can still be
too high for low-power applications. This section introduces a
further improvement of the architecture to increase the power
savings obtained.

This technique employs the pre-computed parameter to
perform a power-aware ordering of the data. The parameter
extracted allows us the classification of the memory contents
based on the one’s count. This classification can be used to
store the memory contents in such an efficient way that the
search operation is restricted to a smaller memory size.

A. Main Idea

The order of the memory data attending to the one’s
count parameter allows to split the memory architecture into
independent banks. Every data in the bank has the same value
for one subset of the parameter (ex. N-least significant bits).
The logic needed for this ordering is very simple and does
not present a serious overhead in terms of delay and energy
consumption. Moreover, there are several advantages of using
a banked implementation (see Table I).

Due to the banked implementation of the memory, the
operation of the architecture is restricted to just one bank
every cycle. One of the advantages of this banked structure
is the reduction of the dynamic power consumption due to the
reduced charge in the bit lines (the driven line is simplified to
the bit line of just one bank of the memory). This behavior
is also shown by the parameter lines and also has a positive
influence in the memory speed.

The complexity of the logic shared for the banks (buffers,
priority encoders and address decoders) is reduced when the



TABLE I
ADVANTAGES OF BANKED IMPLEMENTATION.

Bank structure Parameter reduction

Area Common circuitry simplification Parameter size reduction
NAND logic simplification

Power
Reduced # of comparisons Reduced # of comparisons
Reduced line charge Reduced line charge
Common circuitry simplification NAND logic simplification

Delay Common circuitry simplification NAND logic
simplificationReduced line charge
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bank approach is applied. This simplification saves area, power
consumption and improves the delay of these devices.

B. Reduction of Parameter Size

Every word stored in the memory bank has the same value
for one subset of the parameter (the one used to select the
bank). Therefore, this subset does not need to be stored in
the memory and the parameter size is reduced as well as the
number of comparisons. For example, in the implementation
shown in figure 8, the memory array has been split into four
banks, and therefore two bits of the parameter can be omitted.

This simplification allows us to reduce the number of mem-
ory cells required and, in this way, the area of the memory.
Moreover, the power consumption related to the parameter
comparison is reduced since the line charge is smaller. Finally,
the logic needed to perform the parameter comparison is
significantly simplified.

Finally, it is needed to remember that the parameter com-
parison in a PB-CAM is divided into two parallel comparisons
(filtering and data). The filtering comparison is also affected
positively by the banked implementation. When the working
bank is decided, the parameter is partially compared because
only those words in the selected bank could give a positive
result in the search operation. As a result, the number of
filtering comparisons is divided by the number of banks.

VI. EXPERIMENTAL WORK

The experimental work and evaluation of the previous
architectures has been carried out with Spice simulations in
the Cadence environment. We have used the .35µm technology
from Austria MicroSystems, with dual-poly quadruple-metal
CMOS process.

Fig. 9. Percentual use of (S0-S1) and (S3-S4)

A. Baseline Architecture
The baseline architecture has been implemented with the

required specifications to execute an internet table routing
application. This memory presents a fully-parallel architecture
with 32 bits/word CAM and 32 bits/word RAM.

The memory capacity is 2048 positions split into 4 banks
and a single 512-positions priority encoder shared by all banks.
To select among the 4 banks, 2 out of the 5-bit parameter
word have to be selected. Among different options, we have
evaluated to use S0-S1 or S3-S4 to select the working bank.

To preserve the spacial locality in the input data, the bits
S3-S4 could be selected. However, the optimal design of the
banked architecture claims for a homogeneous use of every
bank, and the bits have to be carefully selected.

Figure 9 shows the percentual use of the four banks when
S0-S1 and S3-S4 are used to select the working bank. For
these simulations, the 232 input data have been supposed to
have the same probability. As can be seen, the selection of
S0-S1 shows better behavior for this application since the four
banks are homogeneously used.

With this selection, every data word in the baseline archi-
tecture will be composed of the validity bit, three bits for the
parameter (S2-S3-S4) and the 32-bits data.

B. Experimental Results
Based on the proposed pipelined PB-CAM word structure

and cell circuit design, the PB-CAM architecture achieves low-
power, low-cost, and high-performance features. The measured
search access energy consumption for our implementation is
31.5fJ/bit/search, which compared with the 86 fJ/bit/search of
the baseline architecture [5] represents a 63.3% improvement.
Also, the obtained 3 ns latency represents a 70% improvement
with respect to the baseline architecture, and a 57% with
respect to our non-pipelined implementation.

As was said, the most power consuming task in the CAM
access is the search operation. An analysis of the number of
memory cells excited during the search operation has been
performed. This evaluation gives an overview of the behavior
in terms of power consumption for several memory capacities
and word lengths. These results are shown in Figures 10 and 11
where the comparison with the tradition implementation, PB-
CAM and banked PB-CAM with pipeline can be observed.



Fig. 10. Activated cells for a fixed memory capacity (2048b)

Fig. 11. Activated cells for a fixed word length (32b)

As can be seen in Figure 10, the traditional implementation
shows a linear trend on the number of memory cells compared
when the memory size is fixed (2048 positions) and the
number of bits per word is ranged. On the contrary, the
number of memory cells compared remains almost constant
(logarithmic growth) for the PB-CAM implementation, due
to the fact that the parameter size is log(Nbits + 2). This
graph also explains how for a reduced size of the word
length, the parameter overhead could overcome the savings.
The proposed implementation (PB-CAM 4b) improves these
last results nearly by a factor equal to 4.

Figure 11 shows the linear tendency on the number of
memory cells compared for the traditional CAM, the PB-CAM
and the pipeline-banked PB-CAM when the word length is
fixed (32b) and the memory size is ranged. The different slopes
between the linear tendencies explain how for large sizes of
memory, the savings with the PB-CAM are quite representative
and the banked CAM still improves these results.

Finally, Figure 12 shows the distribution of the energy
consumption in the pipelined PB-CAM. As can be seen, most
of power consumption is still wasted in the pseudo-static
logic (53%). Our research in this area has obtained further
improvements in this energy consumption [10].

VII. CONCLUSIONS

Nowadays, the limiting factor in applications where the
CAMs play a critical role is the power consumption of these

Fig. 12. Power distribution in the experimental pipeline.

devices. The integration levels achieved by current technol-
ogy processes have turned the area and performance factors
into secondary actors. Search-based applications with high-
performance constrains, as IP routing processors, demand
efficient implementations of content-addressable memories to
cover the astringent constrains.

The work presented in this paper has shown a practi-
cal implementation of a low-power CAM oriented to high-
performance IP routing. The pipelined organization of the
architecture promises greater scalability in the performance
and density of IP routing processors.
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