
REDUCTION OF REGISTER FILE DELAY DUE TO PROCESS VARIABILITY IN VLIW
EMBEDDED PROCESSORS

Praveen Raghavan
�
, José L. Ayala

�
, David Atienza

��� �

Francky Catthoor
�
, Giovanni De Micheli

�
, Marisa López-Vallejo

�
�
DIE/UPM, Spain.

�
IMEC vzw and KULeuven, Leuven, Belgium.�

DACYA/UCM, Spain.
�

LSI/EPFL, Switzerland.

ABSTRACT
Process variation in future technologies can cause severe
performance degradation since different parts of the shared
Register File (RF) in VLIW processors may operate at various
speeds. In this paper we present a complete approach that han-
dles speed variability of the RF proposing different compile-
time and run-time design alternatives. The first alternative
extends current RF architectures and uses a compile-time
variability-aware register assignment algorithm. The second
alternative presents a fully-adjustable pure run-time approach,
which overcomes the variability loss as well, but at the extra
cost of cycles and area. However, the savings achieved and the
run-time management of the register delay variations without
any support from the user, show a very promising application
field. Our results in embedded system benchmarks show that
variability can be tackled without significant performance
penalty, and trade-offs between performance and area are
possible thanks to the whole design spectrum provided by
the two presented alternatives.

I. INTRODUCTION
New multimedia consumer applications require high per-

formance embedded platforms due to their intensive pro-
cessing requirements. In this area of embedded systems,
Very Large Instruction Word (VLIW) processors provide a
promising solution to achieve suitable performance-power
trade-offs. However, transistor scaling in future technology
nodes is accompanied by an increase of variability in process
technology. Two types of variations exist: functional variation
and parametric variation. Functional variation leads to loss in
component functionality, while parametric variation leads to
timing issues in the working component with respect to its
originally designed speed [1], [2], [3].

In this paper we present several solutions to handle
parametric variation in shared register files of embedded
VLIW processors, which provide also trade-offs of pre-
characterization (design time) effort and dynamic (run-time)
overhead for self-tuning. The first solution (Section III) is a
hardware/software (HW/SW) approach that relies on limited
HW extensions in the Register File (RF), and a modified
register assignment phase at compiler level to prevent using
marked slow registers. In the latter two approaches (Sec-
tion IV), we propose further extensions of the RF HW
architecture to create completely run-time schemes against
dynamic variation in the RF. These run-time approaches do

not require additional compilations for every target device.
Our results with several embedded multimedia benchmarks
(Section V) show that these approaches can overcome in most
of the cases the expected variability in future technologies
without performance penalties compared to the ideal case
(i.e. without speed variations), and provide several design
alternatives of shared RFs against parametric variation.

II. RELATED WORK
Effects of intra-die stochastic variability on the perfor-

mance of CMOS processor blocks, as ALUs, have been
recently studied [4], [5]. For on-chip memories, the focus
has been in functional yield and reliability issues, where
the use of SRAM cell stability (e.g. signal to noise margin)
and design rules to compensate for performance issues were
proposed [2], [6]. However, to the best of our knowledge
there has been no work which addresses variability problems
in RFs at compiler level.

Regarding reliability in future technologies, Single-Error-
Correcting-Multiple-Error-Detecting (SEC-MED) codes are
already integrated in on-chip memories and some proces-
sors [7], [3] to decrease the probability of error. Also, [8]
shows that program behavior patterns can be used to generate
custom-error correction mechanisms for memory portions.
Nevertheless, these techniques are not suitable for RFs since
they impose significant area and energy consumption over-
heads.

In addition, system-level fault tolerant management mech-
anisms have been proposed for soft errors [3].Then, [9]
uses redundant components and self-checking for embedded
systems to extend processor lifetime in case of process
variation. [10] presents self-repairing mechanisms via pre-
existing processors. These works are complementary to our
approach since they deal with functional variation in on-
chip memories and processors, while the goal of our work
considers parametric variation in the RF.

III. VARIABILITY-AWARE HW/SW COMPILATION
The baseline VLIW architecture used in our work is pro-

vided by the CRISP framework [11] which is a cycle-accurate
extension of the Trimaran framework [12] including memo-
ries. It consists of a cycle-accurate simulator of a selectable
number of Functional Units (FUs) and RFs (RFs) that model
the desired Digital Signal Processor (DSP). It includes a re-
targetable compiler based on the Trimaran framework [12]. In

1211-4244-0921-7/07 $25.00 © 2007 IEEE.

WB
WBb

WW
WWb

Read word
decoder

Read word
decoder

Memory cell array

data in

write address

write enable
data
out

data
out

read

read
addr B

RAW

RBW

RAB RBB

addr A

Comparator

Comparator

Bit line
drivers

Write word
decoder

Sense
amplifier

Sense
amplifier

Output
latches

Output
latches

Fig. 1. RF block diagram

the following, the extensions applied to the CRISP framework
are described.

A. HW Extensions
In a typical configuration, the RF is an array of N words by

M bits. Any of the N words can be simultaneously accessed
by any of the ports of the RF (read or write). Figure 1
shows that the RF contains seven distinct types of functional
blocks [13]. In this design, the memory cell array stores the
data bits, and is arranged in a grid of N rows by M columns
of memory cells. When any of the ports accesses it, the
read/write operation is performed simultaneously on every
memory cell in the selected row.

Technology variations during device manufacturing can
create delays in any component shown in Figure 1. In our
approach, the write/read delay of each RF register with
respect to the original specification is stored in the HW
architecture using some extra bits per register (in our notation,
label bits). In case a 1-bit label is used, a ‘0’ would indicate
the register satisfies the timing requirement and ‘1’ would
assume that it does not (therefore we would have to assume
a worst case, i.e., 4 cycles) delay. In case a 2-bit label
is used, then a more fine-grained labeling would be done,
i.e, ‘00’ would mean satisfying a 1-cycle delay, ‘01’ would
imply 2-cycle latency to operate and so on. This classification
is done in an initial characterization phase after production
and requires the area overhead of extra timing circuitry and
storage of the label bits. Since the size of this circuitry is very
small, the timing circuitry overhead will be not noticeable
and can be neglected. Furthermore, this circuitry is activated
only once after fabrication time; thus, its dynamic and leakage
power overhead can be neglected because it can be Vdd gated
during the normal processor execution. The storage overhead
for the label bits has been calculated using a TSMC 90nm
technology and our results indicate that it is very limited with
respect to the area of the baseline RF (Section V). We suppose
no process variation on this extra bits due to two assumptions:
(1) the extra bits required account for a very limited area;
hence, the probability of any variation in their storage is very
low. (2) this storage can be over-designed, so that it is more
tolerant to process variation (without a significant overhead in
the overall area of the RF). Finally, the number of sets used to
classify the registers enables trade-offs between accuracy in

(a) LUT

P3
P6
P7
P12

L2

P1
P8
P9
P13

L3

P2
P15
P21
P22

L
ogic R

egisters

Physical R
egisters

P3
P6
P7
P12

P1
P8
P9
P13

P22
P21
P15
P2

pointer 1

pointer 2

pointer 3

fi
rs

t s
et

(f
as

te
st

)
se

co
nd

 s
et

th
ir

d
se

t
(s

lo
w

es
t)

(b) FIFO

L1

Fig. 2. Implementation of (a) LUT HW module (b) FIFO HW module

the classification and the area of extra label bits (see Section
V for examples in real benchmarks).

B. Compiler Support for Variability
The Trimaran compiler of the CRISP framework has been

modified to include manage the described HW architecture,
including label bits. In prticular, the register allocation phase
of the compiler has been rewritten to incorporate this extra
knowledge.

Traditionally, register assignment algorithms choose regis-
ters from the whole set of free registers without any con-
straint. In the case of Trimaran, as many other compilers,
it retrieves the first register from a First Input First Output
(FIFO) list of free registers. The order of registers inside
the list is not representative and no restriction on selecting
the registers exists, so the assigned registers in the original
register assignment can easily belong to different delay sets.
Our register assignment policy modifies this original register
assignment by first selecting the registers labeled as faster
registers. The new compiler initializes internally FIFO lists
for each delay set in the RF by a first reading phase of the
stored label bits, and performs a variability-aware assignment
giving preference to registers of the fast sets for the loops of
multimedia applications. These applications are usually loop-
dominated [14] and the execution of loops seriously affect
the overall processor performance.

This compiler phase has no extra overhead in terms of area,
performance or power consumption of in-order processors.
However, it requires the recompilation of the sources for
every target processor since the profile of access delays
varies between each instance of the target architecture. This
limitation makes difficult its extended use. Therefore, we have
also designed two additional run-time HW techniques to solve
this previous limitation at the potential cost of reducing the
overall potential savings of the compile-time approach. The
compiler approach can be considered as the baseline proposal
wich the HW approach is compared to.

IV. HW RUN-TIME APPROACHES
The initial register assignment performed by the compiler

can be redefined at run-time to assign first the registers with a
reduced access delay. For that purpose, we have first defined a
technique using a Look-Up Table (LUT)-based HW. The LUT
included in the system translates the logic registers (software

122

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ad
pc

m_d
ec

od
e

g7
21

_d
ec

od
e

mes
a_

tex
ge

n
ae

s

blo
wfis

he
nc

od
e

ep
ic

sh
a

mpe
g2

de
co

de

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Norm. Worst Case Norm. Proposed 1-bit Soln Norm. Proposed 2-bit Soln

Norm. Hardware Soln Norm. Best Case

Fig. 3. Normalized performance with 50% stochastic faulty registers with
1-bit and 2-bit classification and HW based solution

assigned) into the physical registers (HW assigned) trying to
minimize the access delay. The granularity of the assignment
in the current version we have developed can be chosen to be
low (just 2 sets, i.e., slow and fast registers) or high (4 sets),
see Figure 2(a). Since the compiler assigns the logic registers
in an increasing manner (i.e., 1, 2, etc), the smallest indexes
will be the most frequently used, and they will be translated
into fast registers. Then, the processor, which can have the
profile of register speeds stored in the BIOS of the system,
accesses the LUT to write the translation information during
the boot of the system. Once the translation information
is communicated to the LUT, the table works as a normal
translation device at run-time.

Also, since the LUT approach can expose a negative impact
in access time to the memory device due to the overhead
of finding a free register to be assigned, we have defined a
simplified version of this HW technique, which uses a First-
Input First-Output (FIFO) list of free registers. In this case,
the complete set of indexes of free registers is stored in a FIFO
mode in an ordered way according to the order given by the
access delay (i.e. according to their reduced access delay).
As in the LUT-based technique, the profile information of
the register delays can be stored in the BIOS of the system
and loaded into the FIFO at boot. Then, the module acts
as a FIFO whenever is read (if all the fastest registers are
assigned, then the slower ones are taken), but some extra
pointers are needed to identify the end of every set where the
freed registers should be taken back (see Figure 2(b)). Thus,
the granularity level is determined by the number of pointer
registers included, and trade-offs between area and granularity
exist. Finally, LUT and FIFO approaches introduce an extra
access time that could represent a performance penalty if the
savings achieved in the register translation do not overcome
this delay (see Section V for more details).

V. CASE STUDIES AND EXPERIMENTAL RESULTS
The CRISP framework was used to simulate a 32-bit, 4-

issue VLIW processor, including 12 ports (8 read and 4 write)
128 entries deep RF. We simulated various MediaBench [14]
benchmarks on this architecture. The area of the original
RF was ��� 	�

����	�������� using the TSMC 90nm standard
cell synthesis process. We assumed that process variations
of access time delays in the whole pool of registers follows
an homogeneous distribution, as suggested by [1]. The RF
was annotated to inject such a distribution. Therefore, when
the benchmarks compilation process has finished in CRISP,

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
No. of Reg satisfying timing constraint

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

aes mesa_texgen blowfishencode mpeg2decode sha

Fig. 4. Evolution of performance due to variability with compiler based
1-bit classification

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

No. of Reg meeting timing constraints

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

aes mesa_texgen blowfishencode sha mpeg2decode

Fig. 5. Evolution of performance due to variability with compiler based
2-bit classification

the percentage of utilization of the RF can be obtained. Then,
after the execution of the benchmarks, CRISP provides us the
number of registers that meet the performance constraints and
overall performance results with the injected timing variations
(based on the register allocation).

A. Experiment 1
In a first set of simulations we have studied the normalized

execution time when 50% of the registers do not meet the
timing constraint of 1 cycle of operation (at 300 MHz), i.e.
they do not respond in less than 3.33 ns. The execution time
has been normalized to this best case, where all registers
respond in one cycle. We have assumed that 32 out of 128
registers meet the performance constraints (read/written in
one cycle), while 32 registers require 2 cycles, 32 require
3 cycles, and the last 32 need 4 cycles. No further process
variation is considered. Any register that requires more than
4 cycles is marked as unusable.

Figure 3 shows the normalized performance results in
terms of average number of clock cycles to access the RF
using one/two bits for the label bits, and for the worst case
simulation (i.e. all registers belong to the slowest set with
4 cycles of latency) and the best case simulations. These
results indicate that our compiler-based approach achieves the
optimal point of the best case without variability in 4 of the
benchmarks, namely, 57% better than the worst case for the
other benchmarks on average with the 1-bit labeling and 67%
better in the case of 2-bit labeling.

Both types of HW-based solutions also provide the same
performance improvement, and only one bar is shown for both
in Figure 3 (38% faster than the worst process corner). Note
that an extra cycle is needed for every RF access due to the
overhead of the FIFO or the mapping table. Hence, the HW
based technique cannot perform as well as the compiler-based

123

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
No. of Reg satisfying timing constraint

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

aes mesa_texgen blowfishencode mpeg2decode sha

Fig. 6. Evolution of performance due to variability with HW based solution
(both FIFO based and mapping table based)

Technique Area Power Avg. Perf. Compile Time
(in �����) (in ���) (w.r.t W.C.)

Compiler 1.16 � ���� 0 67% Compile needed
-based (2-bit) for every chip

Mapping Table 5.47 � ��� 54.67 38% Once

FIFO-based 2.54 � ���� 29.19 38% Once

TABLE I
COMPARISONS OF RELIABILITY-AWARE RF DESIGN TECHNIQUES

technique for these in-order processors. The performance of
the HW-based technique is at best two times worse than the
ideal (best) case, as a translation is always needed1.

Also, the results of Figure 3 show that large benchmarks
with strong register pressure (e.g. aes and blowfishencode)
always need to use registers that do not meet the timing
constraints. Therefore, the solutions using two bits for the
label bits (i.e. classifying the registers into four delay sets)
achieve better results than using only one label bit. The only
benchmark that does not benefit to the same extent with any
of these configurations is mpeg2dec, since it demands a large
amount of registers during the whole execution. Therefore,
for this benchmark we have tested the potential benefits of
increasing the number of label bits. Our results indicate that
with 5 or more bits we can improve the case of 2 bits, reaching
its maximum with 7 bits (only 25% worse than the best case),
which outlines the existence of trade-offs between area and
performance even with tight system requirements.

B. Experiment 2
In a second set of experiments we have evaluated possible

trade-offs between area overhead of label bits and achievable
performance if the number of registers that fail the timing
constraints varies (Figure 4 and 5). Our results indicate that
the optimality in the number of label bits (1-bit or 2 bits)
is largely determined by the variability in the RF and the
desired performance. Also, another observed trend is the
steeper degradation of execution time in the case of 1-bit label
registers compared to the two-bit solution. This effect occurs
due to the more fine-grained exploitation of the register delay
with 2 bits, similarly as the performance effect explained
before for the larger multimedia benchmarks. Moreover, these

1It is assumed no process variation in the FIFO or the mapping table. This
can be ensured by over-designing (i.e. worst-case design) this HW, whereas
the RF can be designed at an average-case design.

results indicate that using 2-bit for the label bits already
achieves the best case performance bound in almost all tested
multimedia applications, assuming a variability of up to 39%
(i.e. 50 registers responding in 1 cycle). Figure 6 shows a
similar plot for HW-based solutions. This figure illustrates
that all curves saturate at a normalized execution time of
2. The trend in HW-based approaches is similar to the
compiler-based approach. It was seen that when more than
50% of the registers satisfy the register timing requirement,
most benchmarks give the required performance. Finally,
the comparisons of HW- and compiler-based techniques are
summarized in Table I. It shows that the area and power
overhead of the mapping table and FIFO-based approaches
is higher than in the compiler technique, but removes the
problem of recompiling for each instance of the final device.

VI. CONCLUSIONS
In this paper we have presented a HW/SW compile-time

approach and two HW-based run-time design alternatives to
handle speed variability of the RF. We have analyzed the
advantages and disadvantages of these methods and their
applicability to real-life applications. Our results indicate
that the proposed approaches almost completely avoid per-
formance penalties due to variability in VLIW processors.
Moreover, these results have outlined that trade-offs between
performance and area overhead are possible according to
system requirements.

VII. ACKNOWLEDGEMENTS
This work is partially supported by the Spanish Gov-

ernment Research Grants TIN2005-05619 and TEC2006-
00739/MIC.

VIII. REFERENCES
[1] Hua Wang, et al. “Systematic analysis of energy and delay impact of very

deep submicron process variability effects in embedded sram modules,”
in Proc of DATE, 2005, pp. 914–919.

[2] A. J. Bhavnagarwala, et al. “The impact of intrinsic device fluctuations
on cmos sram cell stability,” IEEE J. Solid-State Circuits, vol. 36, no.
2, pp. 18–31, 2001.

[3] V. Agarwal, et al. “The effect of technology scaling on microarchitectural
structures,” Tech. Rep., TR2000-02, UTAustin, 2002.

[4] T. W. Chen et al. “A low cost individual-well adaptive body bias
scheme for leakage power reduction and performance enhancement in
the presence of intra-die variations.,” in Proc of DATE, 2004, pp. 240–
245.

[5] C. Visweswariah, et al. “First-order incremental block-based statistical
timing analysis,” in Proc of DAC, 2004, pp. 331–336.

[6] R. Heald, “Managing variability in SRAM designs,” in In Proc of ISSCC
uP Forum, February 2004.

[7] M. Blaum, et al., “The reliability of single-error protected computer
memories,” IEEE Trans. Comput., vol. 37, no. 1, pp. 114–119, 1988.

[8] N. S. Bowen et al., “The effect of program behavior on fault observ-
ability,” IEEE Trans. Comput., vol. 45, no. 8, pp. 868–880, 1996.

[9] P. Shivakumar, et al. “Exploiting microarchitectural redundancy for
defect tolerance,” in Proc of ICCD, p. 481-487, 2003.

[10] C-L Su, et al., “A processor-based built-in self-repair design for
embedded memories,” in Proc. of ATS, 2003.

[11] P Op de Beeck, et al, “Crisp: A template for reconfigurable instruction
set processors.,” in Proc of FPL, pp. 296–305, 2001.

[12] Trimaran, “Trimaran: An infrastructure for research in instruction-level
parallelism,” 1999, http://www.trimaran.org.

[13] S A. Steidl, A 32-Word by 32-Bit Three-Port Bipolar Register File
Implemented Using a SiGe HBT BiCMOS Technology, Ph.D. thesis,
Rensselaer Polytechnic Institute, 2001.

[14] C. Lee, et al., “Mediabench: A tool for evaluating and synthesizing
multimedia and communicatons systems,” in Proc of MICRO, pp. 330–
335, 1997.

124

