Multi-way Clustering Techniques for System Level Partitioning

M. L. Lépez Vallejo' and J. C. Lépez Lépez?

t Dept. Ingeniera Electrénica
ETSI Telecomunicacién, Univ. Politécnica Madrid
Ciudad Universitaria s/n, E-28040 Madrid, Spain

i Dept. Informdtica
ESI, Univ. Castilla La Mancha
E-13071 Ciudad Real, Spain

marisa@die.upm.es

Abstract— This paper presents a new approach to sys-
tem partitioning based on clustering techniques. The
adaptation of the heuristic is based on a robust system
model. Major modifications include the formulation of
a general and effective closeness function and the use
of a new control scheme. The final implementation has
been widely checked, obtaining promising conclusions.

I. INTRODUCTION

System partitioning deals with the assignment of
parts of a system description to heterogeneous im-
plementation units: ASICs (hardware), standard or
embedded micro-processors (software), memories, etc.
This is a key task in system level design, because the
decisions that are made at this time directly impact
on the performance and cost of the final implementa-
tion. During this stage, many different aspects must
be considered to tackle the heterogenity of the differ-
ent processing units. Consequently, the automation of
the partitioning phase is excepcionally complicated.

To automate system level partitioning many algo-
rithms and techniques have been developed in differ-
ent co-design environments [4], [3], [5]. For instance,
previous work has been done in the adaptation of clas-
sic circuit partitioning algorithms (clustering [1], min-
cut [9]), the use of general optimization methods (sim-
ulated annealing [3], tabu search [2], linear program-
ming [7], etc.) or genetic algorithms [§].

In this paper we propose the introduction of system
level issues within hierarchical clustering algorithms to
partition complex systems into hardware and software
components. The application of these techniques at
system level requires significant modifications of the
classical algorithm, because the resulting partitions
have different nature. Hierarchical clustering has been
previously used for Hw-Sw partitioning. In [10] differ-
ent and interesting closeness metrics are defined, but
their application is not straight-forward and their use
is not clearly described. We believe that the close-
ness metrics must be different for the hardware and
the software partitions. Thus, the clustering proce-
dure needs to be modified and specific metrics for the
different implementation units must be defined. Ad-
ditionally, we have defined a robust problem model
which helped us introducing important modifications

This work is funded by CICYT project TIC2000-0583-C02

lopez@Quclm.es

SPECIFICATION

SYSTEM LEVEL
PARTITIONING

teomm ()

HW-SW
CO-ESTIMATION
HW-sw /o
CO-SIMULATION
—
-/
PROTOTYP@
—

Fig. 1. Flow of Information in the Partitioning Model.

to the original algorithm. In [1], other closeness met-
rics are introduced, being mainly based on the specifi-
cation language UNITY. Nevertheless, cost issues are
not considered, as we propose in this work.

The structure of this paper is as follows. First, the
particular system partitioning problem we solve is pre-
sented. Next section describes the proposed clustering
scheme in depth. Finally, experimental results will be
presented and some conclusions will be drawn.

II. SYSTEM PARTITIONING

The resolution of a problem requires the definition of
a model representing all the important issues related
to the specific problem. We describe in this section
the system partitioning problem we deal with.

A. Partitioning Model

The flow of information within the partitioning pro-
cess presented here is depicted in Figure 1. The input
is an execution flow graph which comes from the ini-
tial system specification. In this graph (directed and
acyclic), nodes stand for basic computation units and
edges represent data and control dependencies. Nodes
can be big pieces of information (tasks, processes, etc.)
or small ones (instructions, operations), following re-
spectively a coarse or fine granularity approach.

Every graph vertex, v;, is labeled with several at-
tributes: Hw area (ha;), Hw execution time (ht;), Sw
memory size (ss;), Sw execution time (st;) and the av-
erage number of times the task is executed (n;). Edges
have also associated a weigth value that represents the
associated communication delay, tcom(4,7)-

As it is well known, system partitioning is clearly
influenced by the target architecture where the Hw
and the Sw will be mapped. The target architecture
we consider consists of one standar processor, several
hardware co-processors and a shared memory accessed
through a common bus. Interface modules are used to
connect the processor and the co-processors to the bus.

The output of the partitioning tool is not only an
assignment of blocks to Hw or Sw implementations,
but also their scheduling and the communication cost
produced in the Hw-Sw interface. Scheduling is per-
formed by means of a list-based scheduling algorithm.
The scheduler takes into account the timing estimates
of every vertex in the graph and the dependencies
among them. As output, it gives the design latency,
Ty, and the communication overhead.

The validity of the proposed solution is measured by
means of significant design quality attributes, like the
Hw area, A, the design latency, T, and the required
memory space, M,. Every attribute is associated to
a design constraint, being these constraints the maxi-
mum allowed area, A, the muximum execution latency,
T, and the size of the available memory, M.

Here we must introduce other important param-
eters, the extreme wvalues. These parameters are
obtained through the extreme implementations, the
all-hardware and the all-software solutions. These
bounds provide an idea of the difficulty of finding a
solution with a given set of constraints, ensuring that
we do not look for an impossible solution. From the
all-hardware solution we obtain, MinT', the minimum
design latency and MaxA, the maximum Hw area.
From the all-software solution we obtain two more pa-
rameters: MaxT, the maximum design latency and
MazM, the maximum memory space. To ensure that
we do not look for an impossible solution, the system
constraints must always verify: 0 < Y A < MazA,
0<M< MaxM and MinT <T < MazxT.

B. Problem Formulation

More formally, the Hw-Sw partitioning problem can
be formulated as follows. Given a system descrip-
tion in the form of a task graph, directed and acyclic,
G = (V,€) where V is the set of vertices and £ is
the set of edges, with a timing goal (for instance a la-
tency T'), a target architecture D = (II,T'y,Ts,... ,Y)
(where II stands for the standard processor, I'; repre-
sents the i-th hardware co-processor and Y is the inter-

face model) accompanied by a set of architectural con-
straints (A, maximum Hw area, M, maximum mem-
ory size, B, bus transfer rate and W, bus width), and
a cost function that evaluates the quality of a given
solution F : G — [0, 00); the Hw-Sw partition, P, is
a function that assigns every vertex of G to a process-
ing unit of D with a starting time ¢t € [0,00) while
minimizing the cost function F. Formally:

P:V = {I,T'1,Ta,... Tp} x [0,00) /

{ YweV P(v)=(i,t) with { ;Ei{(?;g)hfn}

F:G — [0,00) is minimized

It must also be verified that:
1. Yo,v3 € V P(vy) # P(v2): condition of time-
space exclusion.
2. Yu1,v2 € V/u; < vg, (< expresses an order relation)
lf P(Ul) = (i,tl) and P(Ug) = (j,tQ) = t1 +
t(i,v1) < ta, condition of data dependencies among
vertices, where t : D x V — [0,00) is a function that
provides for every vertex v € V, its execution time in
the processing unit ¢ € {II,T'y,...T}.
3. If vepg € V / ij €V, Vj 7'é Vend, Vj <
Vend, P(Uend) = (katfin) = tfin + t(kavend) <T,
condition of adjustment of time goal.
4. Let &4, be &4, = {’Uj eV, P(Uj) = (k‘,tj)/ k€
{I'1,...Tx} }; it must be verified that a(Ppy,) =
Ap, < A, 1 < i < n, condition of adjustment of
the area constraint, with a being the function that
estimates the co-processor Hw area with relation to
®;,, in a given point of the design space.
5. Let @5y be @5 = {v; €V, P(v;) = (k,t;) | k=
IT } ; it must be verified that p(®s,) = My, < M,
condition of adjustment of the memory size, with
being the function that evaluates the memory space
needed to run a software code with relation to @, .

C. Hierarchical Clustering

Hierarchical clustering is a constructive method
which groups pairs of partitioning objects based on
a proximity value between the objects. For every al-
gorithm iteration all distances among partitioning ob-
jects must be evaluated, and the pair of objects with
the maximum proximity value is grouped to form a
cluster. As clustering proceeds, new clusters are cre-
ated by grouping two individual objects or by grouping
an object or cluster with another cluster. The process
is iterated until a single cluster is produced and a hi-
erarchical cluster has been formed.

The algorithm is fully characterized by:

o The closeness function that computes the proximity
values.

e The cut level in the cluster tree that provides the
required number of partitions (clusters).

6t i 1
14t

12

08| o e

0.6 -

04

Area and Latency (normalized)

02

0 5 10 15 20
Number of iterations

Fig. 2. Evolution of the area and latency attributes.

Both issues must be strongly modified to perform
system partitioning, because of the different nature of
the target processing units. It is obvious that a close-
ness metric used to group objects that will run in a
standard processor cannot be suitable for those ob-
jects implemented with dedicated hardware. The pro-
posed closeness function takes into account the system
model information grouping those partitioning objects
with a clear tendency to be implemented as hardware.
The process will be driven by the system constraints.

C.1 Control Scheme

Every iteration the algorithm selects the two objects
with the best time improvement when implemented as
hardware (the highest latency decrease). Objects not
grouped along the process will be assigned to the soft-
ware processing unit. The cut level is dynamically
computed whenever a cluster is grown taking into ac-
count the system constraints. It can be said that this is
a “software-oriented” approach, since all objects are
supposed to reside originally in software and during
the process they are extracted to the hardware pro-
cessing unit. With this procedure, the whole cluster
tree does not need to be built.

When a cluster is grown, the area and latency con-
straints (A;, T) are checked. A; is the current ac-
tive Hw area constraint. All Hw area constraitns are
ranked form the lowest to the highest. Initially the
lowest constraint is selected as active. If one of the
clusters grows over the active area constraint, that
cluster is marked as completed (it cannot grow any
more) and the next constraint in the rank is marked
as active. The tree construction stops whenever:
1. The time constraint is met (7, < T') and the Hw
area of the biggest cluster is bellow the active costraint
(A, < Ay).
2. The whole Hw area constraint is exceeded
(>° A, > Y A;) while the latency constraint is not
yet met (T, > T).

In the first case, area and latency constraints are

Clustering

NO

Refinement

Solution NO

YES

¢

YES

i

SOLUTION

Fig. 3. Control scheme of the clustering process

met and the algorithm is almost finished (only the
memory constraint must be checked). In the second
case, the area constraint is exceeded without fulfill-
ing the timing objectives, and therefore, a refinement
phase is necessary. This can be accomplished by a lo-
cal search procedure working with objects with smaller
grain (thus, the last clusters must be broken up).

This approach is based on the idea that to find a
solution there must be several points in the design
space satisfying their respective constraints, as can be
seen in the figure 2. This plot shows the evolution
of the area and latency quality attributes normalized
with respect to the design constraints while building
the whole cluster tree in a clustering process. Axis X
shows the number of iterations in the clustering pro-
cess (number of clusters grown, |V +1|). As the num-
ber of clusters added to the tree increases, the Hw
area becomes larger and the design latency should de-
crease. When time and area constraints are satisfied,
the memory constraint should be checked, playing a
secondary role, though. If memory constraint is met,
the algorithm finishes. Otherwise the cluster growth
continues while other (primary) constraints are still
under their limits. Figure 3 illustrates the algorithm
control flow described above.

C.2 Closeness Function

The proposed closeness function takes into account
the system model information, using the estimates as-
sociated with the vertices and edges of the system
graph G(V,). As it is well known, the exchange of in-
formation among the different processing units of the
architecture penalizes the design latency. Closeness
metrics should intend to reduce this problem. In ad-
dition, since the algorithm follows a “hardware extrac-
tion” approach the time improvement obtained when
extracting an object to hardware should also be con-
sidered. The expression we have formulated as a close-

ness function that takes into account both effects is the
following:

tecom ('Ui’ 'Uj)
tr_com (U’L) + tr_com (Uj)

ti

st;

Ci,j = qr(n +njﬂ)+40 (1)
stj

where At; = st; — ht; represents the time improve-
ment obtained when the object 4 is moved from soft-
ware to hardware. The function tcom (vi,vj) computes
the communication between nodes v; and v; in the in-
terface following a general model of the architecture.
The weight factors gr and g¢ help the designer em-
phasize which factor he wants to optimize.

As can be seen, every function term has been nor-
malized with its Sw time, in such a way that the re-
sulting closeness value is greater for those objects with
bigger difference between hardware and Sw execution
times. The communication term has been normalized
with respect to the addition of communication values
of the cluster object with other objects of the system
graph, being its expression the following:

tr-com('Ui) = Z tCOm(Uiyvk) / 3 ('Ui:”k) €¢€ (2)
vEEV

The use of this kind of normalization highlights the
fact that the communication between two design mod-
ules must be taken into account only when there are
many transfers just between these modules. This term
is then less important when communication with the
rest of the design modules is considerable.

When checking the plausibility of this closeness
function several deficiencies in the behavior of the al-
gorithm were observed. In some cases the algorithm
grouped objects with very high communication values
and a good time improvement, but with a consider-
able size. This halted the algorithm early because of
the Hw area constraint. For this reason the closeness
function was modified to cluster objects that had the
previous time and communication considerations but
which required little Hw area. The resulting function
expression is:

At;] At

Cij= QT(ni; +mnj—)+
i j
MazA (3)
teom (Vi) v5) Mo Y]
qc +4qa
tr_com (Vi) + tr_com(v5) ha; + ha;

where a Hw area term has been introduced, controlled
by its corresponding weight factor ¢g4. This term has
a clear meaning: its value is greater when the area
of the resulting cluster is smaller than the average
system area. This average area is computed by di-
viding the area of the all-hardware solution, MazA,
by the total number of vertices of the system graph
G(V,E) given by the cardinal of V, |V|. The parame-
ter n, is the number of nodes integrating the cluster,

n, = |i| + |j|- As will be described, each clustering
object (single or composed) will be characterized with
the same attributes as the nodes of the system model,
ha;, ht;, etc. This formulation allows us to handle
objects with different size or various components in a
uniform way.

In the same way we can introduce a term for consid-
ering the memory space. In this case, since we are ex-
tracting modules to hardware, the memory term must
try to group objects with large-sized memory. This
value is also computed using the parameter MaxM,
memory of the all-software solution. The final expres-
sion for the closeness function for two objects, i, j, is:

At; At; tecom (vi,vj)
Ci,j = ar(n; +n;=2)+q¢ !
4 (¢ st; J Stj) tT_com('Ui) +tr_com(vj)
To M|am|A $8; + 88
v i j
+qa +qm
e ha; + ha; 1 No M|aV$|M

C.3 Cluster Characterization

It is important to remark that the resulting clusters
must exhibit the same characteristics as the basic ob-
jects, in such a way that no accumulative error is intro-
duced. This characterization allows us to use the same
closeness function throughout the algorithm’s execu-
tion. Consequently, we define the following approxi-
mation to characterize a cluster k =i U j:

o The resulting Hw area is computed by adding up of
the Hw area of the nodes that integrate the cluster.

hay, = Z han + Z ham (5)

Vn €P; VUm €EP;

This estimation is quite rough, because resource shar-
ing is not considered. Nevertheless the approach is
completely valid, and we leave for future study the
improvement of the area estimation procedures.

e The cluster memory space is computed as the sum
of the memory size of its composing vertices.

sS = Z S$8n + Z S$Sm (6)

vn €P; Ym EDj

e The Sw execution time of the cluster is the sum of
the Sw execution time of its composing nodes, due to
code serialization.

sty = Z Stn + Z St (7)

Un €P; Vm EPj

« Hw execution time can be computed in two ways:

1. If there are no data dependencies among the clus-
ter vertices, concurrency is possible, and the Hw exe-
cution time is given by:

hty, = max{ht, with v, € p; Up;} (8)

TABLE 1
RESULTS OBTAINED AFTER APPLYING THE PROPOSED CLUSTERING SCHEME TO THE EXAMPLES.

Characterization Constraints Results

Graph nodes MaxA MinT MaxT MaxM A T M Ap Ty M, Cost
LU 9 69315 74 454 19595 15000 400 17000 9619 356 16463 0.556
30000 200 16000 25604 193 9757 0.606

50000 150 12000 34714 143 5018 0.536
FFT 15 106355 145 842 33619 30000 400 25000 28764 557 18633 23.89
60000 250 25000 59054 265 7880 1.573

80000 200 15000 78192 172 3526 0.575

DCT 9 21952 2231 7312 329692 16000 4000 100000 10976 3675 75013 0.556
13000 5500 200000 5488 5372 164125 0.502

20000 3000 120000 13720 2825 48779 0.529

DCT16 36 34944 6712 20680 1143982 10000 20000 800000 4368 16240 776552 0.472
20000 15000 800000 7644 14500 628607 0.483
30000 16000 750000 5460 15660 721591 0.444
Laplace 9 73009 79 386 17811 20000 250 16000 17132 274 9013 2.024
30000 200 15000 23921 213 7631 1.243

50000 200 12000 37263 141 3679 0.536
Mean 9 132626 99 607 27244 60000 300 20000 43865 386 15438 13.01
80000 500 10000 76137 260 9698 0.538

120000 200 10000 103603 176 4676 0.570

2. If there are data dependencies the cluster vertices
must be scheduled. Since at every algorithm itera-
tion a system scheduling is performed, we know the
starting and finishing times of all the vertices, and
therefore, the cluster execution time is:

hty, = maz{tenda(vn)} — min{tend(vn)} — tidie, (9)

where v, € p; Up; and t;q. is the time the
Hw co-processor is idle between min{tenq(v,)} and
max{tend(vn)}. This kind of timing evaluation has
two clear advantages. First, there is no accumulative
error, because hty is recalculated at every step of the
algorithm. Second, the computational complexity is
not greater, since we take advantage of the scheduling
performed to evaluate design constraints.

Regarding the cluster edges, we will only consider
the edges coming in and out of the cluster, canceling
the edges within the cluster vertices. The external
edges keep their original attributes, because the clus-
ter will be considered exactly as a new system vertex.

I1I. EXPERIMENTAL RESULTS

The algorithm has been applied to a set of real ex-
amples, enumerated in table I, and to a set of gen-
erated examples with bigger size. Here we will focus
on results for a simple architecture (a single hardware
co-processor) to compare the performance of the clus-
tering algorithm to other partitioning procedures.

Table I shows first the characterization of the ex-
amples: the size of the system graph and the values
of the extreme implementations. Area is given in ar-
bitrary units, time in ns and memory in bytes. Hard
constraints are printed with italic face. To measure ev-
ery solution quality (column Cost) we have used the
following cost function [6]:

A T M,
F(P) = kAj” +kT?” +kMﬁ" + kor(A, Ap)

+ kt’l'(T,Tp) + ka(M, Mp)

(10)

where the weight factors are k, = 0.3, ks = 0.4, k,,, =
0.3 and k., = 150 and the function r is a penalty
function that corresponds to (for the area constraint):

[Ap — A]

r(A, Ap) = max {0, A

} (11)
This function helps us interpreting the results. Since
> ; ki =1 then F(P) = 1 is a figure of merit because
(1) constraint overheads will produce cost values much
greater than 1, (2) attribute values tuned to the con-
straints will produce costs close to the unity, and, (3)
in the case that the solution could be optimized the
cost value will be lower than 1.

A first analysis of the results shows that for hard
constraints the algorithm cannot find a valid solu-
tion. Even worse, this algorithm provides solutions
quite far from the valid region. In these cases the
area constraint (a low value compared with MaxzA)
halts the process when latency constraint is not met.
If the constraints are not too hard, the method can
provide a workable solution. The main advantage of
the approach is that it is very fast. We have com-
pared with other partitioning techniques: simulated
annealing, min-cut and an expert system. Figure 4
shows the cost obtained when running all these parti-
tioning procedures with the examples of table I. We
have represented the cost of the solutions obtained for
each example which has been checked with four sets
of constraints represented in the figure as four points
in the axis X. These four set of constraints have been
ordered from harder to softer constraints.

TABLE II
SOBEL EXAMPLE: RESULTS FOR DIFFERENT SYSTEM CONSTRAINTS IN BOTH IMPLEMENTATIONS.

A T M Ap T, M, CPU(s) Cost Ap T, M, CPU(s) Cost
30000 500 45000 25835 837 31829 0.890 68.9727 35773 601 36753 31.71 12.7475
30000 600 45000 25835 837 31829 0.889 24.1513 31830 667 32213 30.07 3.35964
30000 700 45000 25835 837 31829 0.883 6.43341 29705 707 36042 24.428 0.93675
40000 500 40000 35245 77T 27226 1.043 46.836 40237 546 27538 29.832 2.21998
50000 500 30000 | 46097 639 22012 1.391 12.326 49683 483 22582 23.629 0.91031

25

Simulated Annealing ——
20 1 : Kemlghan&‘Lln R ; ' i
H Clustering -—-%-- ! H P

Expert System &~ |

L ; : P 1

Solution Cost

10F

0 e i e e S
REG Lu Mean Laplace FFT
Examples with their constraints
Fig. 4. Cost values obtained for the examples of table I.

To solve the problem of the bad behavior of the al-
gorithm for hard constraints we have used the group
migration algorithm to refine the clustering results.
Table II shows the results obtained after running this
new version with a 20 vertices example and different
hard constraints. For this example the extreme values
are MaxA = 132020, MinT = 219, MaxT = 1134,
MaxM = 53386 (ga=qr=qm=qc=1). It can be
clearly seen that the clustering algorithm is blocked
in the same solution because of the low Hw area con-
straint. This problem is solved by the refinement
stage, what results in an increase of the partition-
ing execution time. However, the computation time
of this mixed procedure is smaller than the time re-
quired by the simulated annealing implementation. In
most cases the combination of the two algorithms re-
sulted in a very good solution: similar to one obtained
with simulated annealing in shorter time.

Concerning the algorithm execution time, for all
the tests we performed the fastest technique was al-
ways the clustering algorithm. This is due to the fact
that clustering only performs system scheduling when
a cluster is grown. The other techniques must schedule
the design at each trial.

As conclusion, hierarchical clustering can be used to
perform a fast design-space exploration, specially if a
refinement stage is performed later. This method can
work with very large system graphs due to its short
computation time. Consequently, we recommend its
use for fine grain descriptions as a pre-partitioning
stage. After this step the design space is reduced and

other techniques can work with objects of different
granularity. We have obtained excellent results with
the clustering technique followed by Kernighan&Lin.

IV. CONCLUSIONS

We have shown that classical clustering techniques
provide attractive alternatives to implement system
partitioning. The heuristic adaptation has been based
on a robust system model. Major modifications in-
clude the formulation of a general and effective close-
ness function and the use of a new control scheme.

The final implementation has been widely checked.
The algorithm provides good results with very short
execution times. However, the hardness of the con-
straints biases the quality of results. Solutions for this
problem have been proposed.

Future work covers the implementation of multi-
stage clustering after decomposing the proposed close-
ness function and the application of the proposed tech-
nique to more complex architectures.

REFERENCES

[1] E. Barros, W. Rosenstiel, and X. Xiong. HW/SW Parti-
tioning with UNITY. In Handouts of 2nd International
Workshop on HW-SW Codesign, Oct 1993.

[2] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli. System
Level Hardware/Software Partitioning based on Simulated
Annealing and Tabu Search. Design Automation for Em-
bedded Systems, 2(1):5-32, January 1997.

[3] R. Ernst, J. Henkel, and T. Benner. Hardware-Software
Cosynthesis for Microcontrollers. IEEE Design € Test of
Computers, pages 64-75, Dec 1993.

[4] R. K. Gupta and G. De Micheli. HW-SW Cosynthesis for
Digital Systems. IEEE Design & Test of Computers, pages
29-41, 1993.

[5] A. Kalavade and E. A. Lee. The Extended Par-
titioning Problem: Hw/Sw Mapping, Scheduling and
Implementation-bin Selection. Journal of Design Automa-
tion of Embedded Systems, 2(2):125-164, March 1997.

[6] M.L. Lépez Vallejo, J. Grajal, and J.C. Lépez. Constraint-
driven System Partitioning. In Proc. DATE’00, pages 411—
416, March 2000.

[7] U. N. Shenoy, P. Banerjee, and a. Choudhary. A system-
level synthesis algorithm with guaranteed solution quality.
In Proc. DATE’00, pages 417-424, March 2000.

[8] V. Srinivasan, S. Radhakrishnan, and R. Vemuri. Hard-
ware Software Partitioning with Integrated Hardware De-
sign Space Exploration. In Proc. DATE’98, pages 28-35,
Paris, France, 1998.

[9] F. Vahid. Modifying Min-Cat for Hardware and Software
Functional Partitioning. In Proc. Workshop on HW/SW
Co-Design CODES/CASHE’97, Mar 1997. Braunschweig,
Germany.

[10] F. Vahid and D. D. Gajski. Clustering for Improved
System-level Functional Partitioning. In Proc. 1SSS’95,
pages 28-33, 1995.

