
An Efficient Hash Table Based Approach to Avoid State Space Explosion in
History Driven Quasi-Static Scheduling∗

Antonio G. Lomeña†, Marisa López-Vallejo†, Yosinori Watanabe‡ and Alex Kondratyev‡

†Electronic Engineering Department
ETSIT, Technical University of Madrid

Madrid, Spain
{lomena, marisa}@die.upm.es

‡Cadence Berkeley Laboratories
Berkeley, USA

{watanabe,kalex}@cadence.com

Abstract

This paper presents an efficient hash table based method
to optimally overcome a new variant of the state space ex-
plosion which appears during the quasi-static task schedul-
ing of embedded, reactive systems.

Our application domain is targeted to one-processor
software synthesis, and the scheduling process is based on
Petri net reachability analysis to ensure cyclic, bounded
and undeadlocked programs. To achieve greater flexibility,
we employ a dynamic, history based criterion to prune the
search space. This makes our synthesis approach different
from most existing code generation techniques.

Our experimental results reveal a significant reduction in
algorithmic complexity (both in memory storage and CPU
time) obtained for medium and large size problems.

1. Introduction
During the last years, the use of design methodologies

based on formal methods has been encouraged as a means to
tackle the increasing complexity in the design of electronic
systems. However, traditional formal verification methods
such as model checking or reachability analysis have the
drawback of requiring huge computing resources.

In this paper we address the problem of software synthe-
sis for embedded, reactive systems, using Petri nets (PNs)
as our underlying formal model and reachability analysis
as a way to formally obtain a valid quasi-static task sched-
ule that ensures cyclic, buffer bounded, undeadlocked pro-
grams [3]. To overcome the state space explosion problem
that is inherent to the reachability analysis, we use a dy-
namic, history based criterion that prunes the state space of
uninteresting states for our application domain. This im-
provement comes at the cost of introducing special proper-
ties to the search procedure. These properties preclude the
application of some of the techniques used to reduce the ef-
fect of the state explosion. This fact makes our synthesis

∗This work has been funded by CICYT under project CORE (TIC2000-
0583-C02-02).

approach different from most previous code generation ap-
proaches and poses new challenges to the problem of state
explosion. In the paper, we focus on eliminating the re-
peated states that appear during the state space search.

The paper is organized as follows. Next section reviews
previous work related to the reduction of the state space ex-
plosion. Section 3 states the problem definition. In section 4
we formally characterize the situations that generate mark-
ing repetitions. Section 5 analyzes the performance of the
proposed solution and presents the results obtained for sev-
eral experiments. Finally, we draw some conclusions.

2. Related work
The detection of symmetries as a method to mitigate the

state explosion problem has been previously studied in [9].
This approach has the drawback of its computation com-
plexity, which is exponential with respect to the graph size.

The reduction theory tries to overcome this problem by
performing a controlled simplification of the system spec-
ification. In [8] a series of transformations that preserve
liveness, safety and boundedness in ordinary PNs are intro-
duced. However the situations modeled by these rules are
somewhat simple. In section 4.1 we will present a more
general approach that considers more frequent situations.
Based on this new framework, it will be easy to extend the
approach of [8] to tackle problems of greater complexity.

Partial order methods are other approach to avoid the
state repetitions that have been successfully employed, for
example, in the formal verifier SPIN [1]. Specifically, the
persistent set theory [6] allows to verify properties that only
depend on the final state of the system and not on the his-
tory of traversed states. Unfortunately this method cannot
be applied to our case, as we will see in section 3. Similarly,
the theory of unfoldings [5] has been mainly developed for
safe PNs while our application uses unbounded nets.

A different approach consists in storing the state space
in a memory efficient manner. Implicit enumeration meth-
ods such as binary decision diagrams, BDDs, or interval
decision diagrams, IDDs, aim at this goal [11]. However,



the construction of these graphs tends to be time consuming
and their performance highly depends on the specific prob-
lem. This makes them unattractive for our applications.

Hash tables [7] are another way to manage the storage
of the reached states. We will use them in our work due to
their simplicity and high efficiency.

3. Problem definition
Our synthesis problem belongs to the same class that

was introduced in [3]. We deal with a system specifica-
tion composed of concurrent processes. Each process may
have input and output ports to communicate with other pro-
cesses or with the environment. Ports communicating with
the environment are called primary ports. Primary ports
written by the environment are called uncontrollable since
the arrival of events to them is not regulated by the system.
The communication through ports occurs through unidirec-
tional, point-to-point channels.

One of the main steps of our software synthesis method-
ology is the generation of a task schedule, verifying that
(1) it is a cyclic schedule, (2) it does not deadlock and (3)
the schedule requires bounded memory resources (in other
words, the cyclic execution of the program makes use of a
finite number of buffers). The system is specified in a high
level language similar to C but modified to allow commu-
nication operations. Processes are described as sequential
programs that are executed concurrently. Later this speci-
fication is compiled to its underlying Petri net model. The
scheduling process is carried out by means of reachability
analysis for that Petri net [8, 3].

Traditionally, each of the processes of the system speci-
fication will be separately compiled on the target architec-
ture. On the contrary, our synthesis process builds a set of
tasks from the functional processes that are present in the
starting specification. Each task is associated to one uncon-
trollable input port from the environment and performs the
operations required to react to an event of that port. The
novel idea is that those tasks may differ from the user spec-
ified processes. The compiler applies its transformations on
each of these tasks, therefore optimizing the code that must
be executed in response to an external event.

Figure 1.A sketches this idea. It depicts two processes
A and B, each of them reading data from its correspond-
ing ports. Both processes communicate between them by
means of the channel C.

However, the data that process B reads from port INB

is processed independently of the data read from channel
C. Hence, an efficient scheduling algorithm could reorder
the source code to construct the threads 1 and 2 depicted in
figure 1.B. In this way, architecture specific optimizations
will be performed on these separate code segments or tasks.

Next sections introduce the fundamentals of the schedul-
ing approach used in our software synthesis methodology.

IN
A

PROCESS A

TASK BTASK A

Code Z

Code X

Code Z
Code X Code Y

Thread 2

IN
A

IN
B

PROCESS B

Code Y

Thread 2
IN

B

Thread 1

Thread 1

B)

A)

Channel C

Figure 1. Code generation

3.1. Petri net fundamentals
A Petri net, PN is a tuple (P, T, F,M0) where P and T

are sets of nodes of place or transition kind respectively [3].
F is a function of (P × T ) ∪ (T × P ) to the set of non-
negative integers. A marking M is a function of P to the
set of non-negative integers. We call number of tokens of
p in M , where p is a place of the net, to the value of the
function M for p, that is, M [p]. If M [p] > 0 the place is
said to be marked. Intuitively, the marking of all the places
of the net constitutes the system state.

A PN can be represented as a bipartite directed graph, so
that in case the function F (u, v) is positive, there will ex-
ist an edge [u, v] between such graph nodes u and v. The
value F (u, v) is the edge weight. A transition t is enabled
in a marking M if M [p] ≥ F (p, t) ∀p ∈ P . In this
case, the transition can be fired in the marking M , yield-
ing a new marking M ′ given by M ′[p] = M [p]−F (p, t) +
F (t, p) ∀p ∈ P .

A marking M ′ is reachable from the initial marking M0

if there exists a sequence of transitions that can be sequen-
tially fired from Mo to produce M ′. The set of markings
reachable from M0 is denoted R(M0). The reachability
graph of a PN is a directed graph in which R(M0) is a set
of nodes and each edge [M,M ′] is a PN transition, t, such
that the firing of t from marking M gives M ′.

A transition t is called source if F (p, t) = 0 for all p of
P . A pair of non source transitions ti and tj are in equal
conflict if F (p, ti) = F (p, tj) ∀p ∈ P . An equal conflict
set, ECS is a group of transitions that are in equal conflict.

A place is a choice if it has more than a successor transi-
tion. If all the successor transitions of a choice place belong
to the same ECS, the place is called equal choice place. A
PN is Equal Choice if all the choice places are equal.

A choice place is unique if in every marking of R(M0)
that place cannot have more than one enabled successor
transition. A unique-choice Petri net, UCPN, is one in
which all the choice places are either unique or equal. The
PNs obtained after compiling our high-level specification
present unique-choice ports.



3.2. Conditions for valid schedules
A schedule for a given PN is a directed graph where each

node represents a marking of the PN and each edge joining
two nodes stands for the firing of an enabled transition that
leads from a marking to the other. A valid schedule has five
properties. First, there is a unique root node, corresponding
to the starting marking. Second, for every marking node
v, the set of edges that start from v must correspond to the
transitions of an enabled ECS. If this ECS is a set of source
transitions, v is called an await node. Third, the nodes v

and w linked by an edge t are such that the marking w is
obtained after firing transition t from marking v. Fourth,
each node has at least one path to one await node. Fifth,
each await node is on at least one cycle.

As a consequence of these properties, valid schedules are
cyclic, bounded and undeadlocked.

3.3. Stopping conditions in the state exploration
The existence of source transitions in the PN produces

an infinite reachability graph since the number of external
events that can be generated is unlimited. Therefore, the
design space that is explored must be pruned. Our imple-
mentation employs two types of stopping criteria: static and
dynamic. The static criterion consists in stopping the search
whenever the buffer size of a given port exceeds the bounds
established by the designer. Besides, we employ a dynamic
criterion based on two steps (see [3] for further details):

1. First, some static port bounds, called place degrees, are
imposed. The degree of a place p is the maximum of
(a) the number of tokens of p in the initial marking and
(b) the maximum weight of the edges incoming to p,
plus the maximum weight of the edges outgoing from
p minus one

A place of a PN is saturated when its token number
exceeds the degree of the place.

2. During the reachability graph construction, a marking
will be discarded if it is deemed as irrelevant. A mark-
ing w is irrelevant if there exists a predecessor, v, such
that for every place p of the marking M(v) of v, it is
verified that (1) p has at least the same number of to-
kens in the marking M(w) (and possibly more) and (2)
if p has more tokens in M(w) than in M(v), then the
number of tokens of p in M(v) is equal or greater than
the degree of p.

3.4. Scheduling algorithm
The scheduling algorithm is based on a recursive ap-

proach using two procedures (proc1 and proc2) that alter-
natively call each other. Procedure proc1 receives a node
representing a marking and iteratively explores all the en-
abled ECSs of that node. Exploring an ECS is done by
calling procedure proc2. This one iteratively explores all
the transitions that compose that ECS. The exploration of a

transition is done by computing the marking node (Mnew)
produced after firing it and calling proc1 for that Mnew.

The exploration of a path is stopped in procedure proc2
when one of the following three criteria holds:

• Finding an Entry Point (EP) for the Mnew (an EP is a
predecessor of Mnew with exactly the same marking).

• The Mnew is irrelevant with regard to a predecessor.

• The marking of Mnew exceeds the maximum number
of tokens specified by the user for some of the ports.

The first criterion may lead to a valid schedule. If, after
returning from the recursive calls we find that the schedule
is not valid we would re-explore the path again. To exhaus-
tively explore the subgraph that exists after a given node v
all the ECSs enabled in v must be explored. This is con-
trolled by procedure proc1.

The latter two criteria do not produce a valid sched-
ule. Hence, after returning from the recursive call, a re-
exploration of new paths will be done providing that there
are still paths that have not been exhaustively explored.

4. Types of marking repetitions
A key property of PNs is their determinism. A given

marking will always enable the same set of transitions.
Hence, if two equal markings are obtained in different in-
stants of the search, they will generate the same reachability
graphs. The subgraph of the reachability graph induced by
the second marking will be the same as that of the first.

Property (1) of a valid schedule (see section 3.2) forces
that any time a new marking, Mi, is generated, the algo-
rithm checks whether there exists some predecessor mark-
ing, Mj , such that Mj = Mi. This check is restricted to
those markings causally related in the reachability graph.
The detection of identical markings in conflict branches
(those that are generated after the corresponding firings of
the transitions that compose an ECS) would avoid the repli-
cation of scheduling subgraphs previously calculated.

According to their nature, we have identified two possi-
ble sources of repetitions. We explain them in detail in the
following sections.

4.1. Structural sources of repetition
The property defining these repetitions is that they are

produced by some characteristic structures of the PN that
specifies the system. Once the reachability graph is devel-
oped, the repeated subgraphs are simultaneously present in
the valid scheduling.

Next, we will introduce several definitions that will help
us to characterize the origin of the repetition sources:

Definition 1 (Equivalent edge set, EES) Two edge sets
are equivalent if a bijective function can be established be-
tween the two sets, such that for every edge of one set there
exists one edge in the other set having the same weight.



MERGING PLACEp
6

p
5

t
L

t
3

p
2

t
1

p
3

CHOICE PLACEp
1

p
4

t
4

t
2

A)

p
5
1

p
6
1

t
3

p
3
1

p
2
1

p
5
1

t
1

t
2

p
3
1

p
4
1

t
4

p
5
1

p
6
1

p
1
1

p
3
1

B)

t
E����������

���������� ����������
����������

����������
���������� ����������

����������

	�	�		�	�	

�
�

�
�


����������
����������

...

...
(EMS)

Writing Port

ECS

Reading Port

... ...

...
REACHABILITY GRAPH

Figure 2. Example of a structure that generates marking rep-
etitions (a) and its associated reachability graph (b)

Definition 2 (Equal merging set, EMS) A set of places in
a PN constitutes an EMS if (a) every place is connected to
the same predecessor transitions, and (b) the set of edges
that every place uses for those connections is equivalent to
the set used by any other place of the EMS.

Definition 3 (Alternative paths, AP) Two paths are alter-
native when (a) both paths access to the same ports and (b)
the set of edges that access to a given port through a path
is equivalent to the set of edges that the other path uses to
access that port.

We are interested in repeated markings appearing on
conflict branches. Since the reachability graph begins with
a unique root node, such branches must have a common
predecessor. The branching under this predecessor corre-
sponds to the decision to fire a specific transition of an ECS.
However, the existence of a choice place is not enough to
produce a repetition. It is necessary that the branches in
conflict generate equal markings. A PN structure that can
exhibit such behavior is that constituted by:

• An ECS, which starts a series of execution paths.

• An EMS, on which the previous paths converge.

• The paths generated between the ECS and the EMS
must be alternative paths.

Figure 2.A shows an example where there exists an ECS
that allows to choose between firing t1 or t2. As can be seen,
both paths are alternative, since they access the same ports
and with the same weights. Figure 2.B shows the reach-
ability graph corresponding to the net of figure 2.A. Each
marking has been denoted with the places that contain to-
kens in that marking, specifying the number of tokens con-
tained within each place as a super-index.

A problem with the structures we have defined so far,
is that we cannot guarantee that every alternative path can
be traversed when there are reading and writing ports that
communicate with other processes. To ensure this, we will
introduce the concept of equivalent paths.

Definition 4 (Ports depending on a writing port) Given
a writing port, pe, belonging to process Pi, the set of ports
that depend on pe is formed by all the ports of Pi such
that the transition that accesses to each of these ports is a
successor of the transition that writes on pe.

Intuitively, the firing of a transition that writes on the port
pe of Pi affects the number of tokens that the depending
ports can contain, since the writing access on pe can change
the evolution of processes different to Pi. These processes
can vary the marking on ports dependent on pe. We will
introduce now a new definition to deal with this situation.

Definition 5 (Equivalent paths, EP) Given two alterna-
tive paths C1 and C2, both paths are equivalent when for
each writing port that is present in the paths, the set of ports
depending on pe is coincident in both paths.

Given an initial marking, the condition of equivalent
paths ensures that if one of the paths can be traversed, the
other path will also be able to be traversed. This is due to
the fact that for each writing port the depending ports are
the same in both paths. Hence, there is no possibility that
the writing operation performed on a port alters the marking
of successor ports of one path and not of the other.

The previous concepts lead to the following theorem:

Theorem 1 Given a PN composed of a set of equivalent
paths starting from an ECS and ending by means of an EMS,
the reachability tree will have repeated subgraphs in the
branches corresponding to the firing of that ECS.

The knowledge of the causes that produce the marking
repetitions allows to develop ad-hoc techniques to avoid
them. Thus, we could devise an algorithm to detect the
structures defined by theorem 1. This technique would be
an intermediate approach between the detection of general
symmetries and the application of reduction rules. In this
paper, though, we will employ a more general and less time
consuming approach based on hash tables.

Conditionals are a possible structure that would produce
structural marking repetitions when they verify the condi-
tions of theorem 1. A simple example is shown in figure 3,
where the last parameter of each port access indicates the
number of tokens to read or write.

4.2. Dynamic sources of repetition
In this case, the generation of repeated markings is due

to the search method employed. These repetitions appear
in searches performed in depth-first order. The search ex-
plores all the enabled transition firing permutations, even
though these lead to the same marking. Unlike the previous
case, the repetitions do not belong to the same schedule, but
to different scheduling solutions that are tried during the
schedule construction.

The sleep set theory, first proposed by Godefroid in [6],
has been successfully applied to eliminate this kind of rep-
etitions. However, the sleep set theory assumes that a state



PROCESS proc1(In_DPORT start,
In_DPORT in, Out_DPORT out) {

int N, x, y, z;
while (1) {
READ_DATA(start, &N, 1);
if (N>1000) {

READ_DATA(in, &x, 1);
y = 10 * x;}

else {
READ_DATA(in, &z, 1);
y = z*z;}

WRITE_DATA(out, &y, 1);}}

START

p
1 CHOICE PLACE

OUT

MERGING PLACE

IN

����������
���������� ����������

����������

����������
���������� ����������

����������

	�	�		�	�	

�
�

�
�


����������
����������


�
�

�
�

����������

��
��
��

��
��
��

ECS

(EMS)

Figure 3. FlowC code and PN for a source of structural rep-
etitions

that did not lead to a successful depth-first search will al-
ways fail when reached again in a new search. The irrel-
evance condition makes this assumption no longer valid,
hence precluding a direct application of this technique.
How to efficiently adapt the sleep set theory to take into
account the history dependence in our search method still
constitutes an open problem.

5. Characterization of the implemented solu-
tion

Due to the special constraints that our synthesis applica-
tion presents, the approach we have finally implemented to
avoid the repetition of states is based on hash tables. Hash
tables are a much less complex method to store old reached
states than implicit representation methods. But, more im-
portantly, their performance is much less problem depen-
dent than that of BDDs or IDDs.

The main problem of hash tables is the existence of col-
lisions. When the table is finite, two or more indexes can be
mapped to the same table location, originating a collision.
Several solutions can be applied, depending on the kind of
verification to be done. Since we need to store all the gen-
erated states, we must discard the use of recent methods
such as the bit-state hashing [4] used in the SPIN tool [1]
or hash compaction [10], in which collisions produce the
loss of states. In order to tackle the collisions we will em-
ploy hash tables with subtables implemented by means of
chained lists [7].

5.1 New scheduling algorithm
In our application, the concept of predecessor node plays

a key role. When a new marking is generated it is impor-
tant to know whether it is irrelevant, what forces to keep
information about its predecessors. Thus, it is essential to
maintain the scheduling graph structure. In other words, it is
not sufficient to keep a set of previously reached states. On
the contrary, the order relations among the markings must
be stored. Hence, we still keep the current portion of the
reachability graph that constitutes a valid schedule.

The scheduling algorithm after including the hash table
remains basically the same. The only difference lies in the

stopping conditions presented in section 3.3. Now, a new
stopping criterion must be considered. The search will also
be stopped whenever a new marking node v has the same
marking as a previously reached node w. The reason for
this is that the schedule from v will be identical to that from
w. Hence node v will be merged to node w.

In the next sections we will devise a process model that
will allow us to assess the amount of repeated states. Then
we will perform some experiments to show the practical
benefits, in terms of algorithmic complexity reduction, ob-
tained after the incorporation of the hash tables.

5.2. Modeling the number of repeated states
Our implementation is based on a hash table with a

chaining scheme to handle the occurrence of collisions. We
apply a hash function based on the xor logic function to the
key string that defines each marking. This function is in-
spired on that appearing in [2]. When the hash table is filled
to a 75% of its capacity, it is enlarged one order of mag-
nitude. The amount of repetitions produced by the cyclic
execution of a process, Po, can be assessed analyzing each
single connected component (SSC) of Po. For the moment,
we will assume there is only a conditional inside the SCC.
If we call pPo

E the place that starts the cyclic execution of
Po (entry point of Po), we can consider that the conditional
partitions the SCC in the following sections:

Predecessor path (Lpred): from pPo

E to the choice place.

Successor path (Lsucc): from the merging place to pPo

E .

Branch paths (Lbranch): those places belonging to each
of the branches of the conditional. Given a condi-
tional formed by NB branches, the places belonging to
a branch path will not belong to any of the other branch
paths of the same conditional.

Assuming that the application execution starts in process
Po with the marking of pPo

E , M0, the number of repeated
states will be equal to the number of states produced by:

1. Traversing the successor path, plus

2. Scheduling a cycle of each of the processes reading
from ports that were written during step 1 or during the
traversal of the paths Lbranch. The entry point for one
of these cycles is the port used by the process to com-
municate with Po

After performing steps 1 and 2, the schedule will have
produced a cycle with respect to the starting marking M0.
These concepts are summarized in the following equation:

SPo
= Lpred + NB × Lsucc +

NB∑

i=1

Lbranchi
(1)

where SPo
is the number of states contained in the cyclic

schedule of process Po and NB is the number of conditional
branches. The number of repeated states of this schedule is
equal to (NB − 1) × Lsucc.



System 1 System 2 System 3 System 4 System 5
WO W I% WO W I% WO W I% WO W I% WO W I%

Num. places 10 26 34 34 34
Num. transitions 10 24 29 30 30

Num. states 19 14 309 257 694 356 2056 702 2987 1016
Num. repeated states 5 0 52 0 338 0 1354 0 1971 0

CPU time (sec.) ≈ 0 0.01 - 0.25 0.21 16 1.03 0.6 42 3.11 1.03 67 5.43 1.74 68
Memory (KB) 49.7 60.23 -21 331 337 -2 614.4 542 12 1204 843 30 1687 1132 33

Table 1. Scheduling results

If there were more than one conditional in the SCC, the
equation (1) should be applied to each of the subsections
in which those conditionals would divide the SCC. If Po

were composed of several SCCs, the equation (1) should be
applied to all of them. Also, as the different paths are tra-
versed it may be necessary either to provide or consume the
necessary tokens of the ports accessed during the traversal.
As we are seeking cyclic schedules, the processes that are
involved in this token transactions must return to their orig-
inal state. This means that a cycle of these processes must
also be executed. All the produced states would add to the
total number of computed repeated states.

5.3. Experimental results
Our scheme has been tested with several practical exam-

ples. Table 1 offers the scheduling results. Columns la-
belled with WO were obtained without employing the hash
table. Columns tagged with W show results with the hash
table. The columns labelled with I show the percentage im-
provement both in memory and CPU time obtained when
hash tables are used. All the examples are variations of a
producer-consumer system targeted to multi-media applica-
tions such as video decoding. The processes communicate
through FIFO buffers. System 1 is composed of two pro-
cesses with a producing/consuming rate (pcr) equal to two.
System 2 incorporates a controller to better manage the syn-
chronization among processes, and the pcr is equal to 48 in
this case. System 3 has the same pcr but includes some
additional processes that perform filtering functions on the
data the producer sends to the consumer. All these exam-
ples contain a unique conditional, composed of two equiv-
alent branches, that generates structural repetitions. System
4 is equivalent to System 3 but including two conditionals
in the SCC, each one with two equivalent branches. Finally,
System 5 is identical to System 4 except that its pcr is equal
to 70.

In System 1 the memory overhead introduced by the hash
table is larger than the reduction obtained by avoiding the
state repetition. This is so because the small size of this ex-
ample produces few states to explore. However, the rest of
examples show that as the number of conditionals increases
and as the difference between the producing and the con-
suming rates raises, the benefits in CPU time and consumed
memory obtained when using hash tables soar up.

6. Conclusions
In this paper we have addressed the problem of reduc-

ing the number of repeated states that are generated during
quasi-static task scheduling in a software synthesis method-
ology for one-processor, embedded, reactive systems.

We have studied and formally characterized the main
causes of the state repetitions. Two prime sources of repeti-
tions were found, with structural and dynamical origin and
we explored different solutions to prevent their occurrence.
Most importantly, we have shown that a scheme based on
the use of efficient hash tables provides the best way to com-
pletely eliminate the structural sources of repetitions.

The experimental results we have obtained demonstrate
the usefulness of our technique, yielding outstanding re-
ductions in the CPU time and memory consumed by the
scheduling algorithm for large-scale, real world problems.

References
[1] http://spinroot.com/spin/whatispin.html.
[2] R. S. A. V. Aho and J. D. Ullman. Compilers: Principles,

Techniques and Tools. Addison-Wesley, 1986.
[3] J. Cortadella et al. Task generation and compile-time

scheduling for mixed data-control embedded software. In
Design Automation Conference, pages 489–494, 2000.

[4] J. Eckerle and T. Lais. New methods for sequential hashing
with supertrace. Technical report, Institut fur Informatik,
Universitat Freiburg, Germany, 1998.

[5] J. Esparza, S. Römer, and W. Vogler. An improvement of
McMillan’s unfolding algorithm. In TACAS’96, 1996.

[6] P. Godefroid. Partial Order Methods for the Verification
of Concurrent Systems. An Approach to the State-Explosion
Problem. PhD thesis, Universite de Liege, 1995.

[7] R. Jain. A comparison of hashing schemes for address
lookup in computer networks. IEEE Trans. on Communi-
cations, 4(3):1570–1573, October 1992.

[8] T. Murata. Petri nets: Properties, analysis and applications.
Proceedings of the IEEE, 77(4):541 –580, April 1989.

[9] K. Schmidt. Integrating low level symmetries into reacha-
bility analysis. In TACAS, 2000.

[10] U. Stern and D. L. Dill. Combining state space caching and
hash compaction. In GI/ITG/GME Workshop, 1996.

[11] K. Strehl et al. FunState– an internal design representation
for codesign. IEEE Trans. on VLSI Systems, August 2001.


